首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

3.
Treatment of isolated mitochondria from rat hepatoma tumor cells (AS-30D) with the oxidant, t-butyl hydroperoxide (tBuOOH, 1 or 5 mumol/ml) resulted in the oxidation of glutathione (GSH to GSSG) and the formation of protein-glutathione mixed disulfides (ProSSG). The GSSG was retained inside of the hepatoma mitochondria. In the presence of ADP+succinate (5 or 10 mM), or ketoglutarate (10 mM) or malate (5 mM), the GSSG was reduced to GSH, but the amount of ProSSG stayed constant. With saline or ADP+glutamate (10 mM)/malate (0.1 mm) no reduction of GSSG to GSH occurred. The presence of antimycin (5 micrograms/ml) with ADP+succinate inhibited reduction. At a concentration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, 0.5 mM) which inhibited a major portion of the glutathione reductase activity, the reduction of GSSG to replenish GSH was also inhibited. NADPH may play a critical role as well, for the addition of 2.4 mM NADPH to permeabilized hepatoma mitochondria fostered the reduction of GSSG after tBuOOH treatment. Therefore, hepatoma mitochondria possess a glutathione reductase-dependent system to reduce GSSG to GSH. The reaction only occurs with actively respiring mitochondria.  相似文献   

4.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

5.
Storey BT 《Plant physiology》1971,48(6):694-701
Energy-linked reverse electron transport from succinate to endogenous NAD in tightly coupled mung bean (Phaseolus aureus) mitochondria may be driven by ATP if the two terminal oxidases of these mitochondria are inhibited, or may be driven by the free energy of succinate oxidation. This reaction is specific to the first site of energy conservation of the respiratory chain; it does not occur in the presence of uncoupler. If mung bean mitochondria become anaerobic during oxidation of succinate, their endogenous NAD becomes reduced in the presence of uncoupler, provided that both inorganic phosphate (Pi) and ATP are present. No reduction occurs in the absence of Pi, even in the presence of ATP added to provide a high phosphate potential. If fluorooxaloacetate is present in the uncoupled, aerobic steady state, no reduction of endogenous NAD occurs on anaerobiosis; this compound is an inhibitor of malate dehydrogenase. This result implies that endogenous NAD is reduced by malate formed from the fumarate generated during succinate oxidation. The source of free energy is most probably the endogenous energy stores in the form of acetyl CoA, or intermediates convertible to acetyl CoA, which removes the oxaloacetate formed from malate, thus driving the reaction towards reduction of NAD.  相似文献   

6.
The addition of tert-butyl hydroperoxide (t-BuOOH) to isolated mitochondria resulted in oxidation of approximately 80% of the mitochondrial reduced glutathione (GSH) independently of the dose of t-BuOOH (1-5 mM). Concomitant with the oxidation of GSH inside the mitochondria was the formation of GSH-protein mixed disulfides (protein-SSG), with approximately 1% of the mitochondrial protein thiols involved. A dose-dependent rate of GSH recovery was observed, via the reduction of oxidized GSH (GSSG) and a slower reduction of protein-SSG. Although t-BuOOH administration affected the respiratory control ratio, the mitochondria remained coupled and loss of the matrix enzyme, citrate synthase, was not increased over the control and was less than 3% over 60 min. A slow loss of GSH out of the coupled non-treated mitochondria was not increased by t-BuOOH treatment, in fact, a dose-dependent drop of GSH levels occurred in the medium. However, no GSSG was found outside the mitochondria, indicating the necessary involvement of enzymes in the t-BuOOH-induced conversion of GSH to GSSG. The absence of GSSG in the medium also suggests that, unlike the plasma membrane, the mitochondrial membranes do not have the ability to export GSSG as a response to oxidative stress. Our results demonstrate the inability of mitochondria to export GSSG during oxidative stress and may explain the protective role of mitochondrial GSH in cytotoxicity.  相似文献   

7.
Oxidation of GSH by ozone yielded 60% GSSG. Exposure of human erythrocytes to ozone caused oxidation of intracellular GSH. Between 4 and 6% of the administered ozone caused GSH oxidation. No more than 30% of the GSH oxidized by ozone could be accounted for by GSSG in the erythrocyte. The GSSG formed in the erythrocyte was rapidly reduced and the pentose phosphate pathway was stimulated. When GSH and unsealed erythrocyte ghosts were simultaneously exposed to ozone, 6–11% of the oxidized GSH could be accounted for as mixed disulfide of protein and GSH. When GSH and cytoplasmic proteins from the erythrocyte were simultaneously exposed to ozone, 5–7% of the oxidized GSH could be accounted for as mixed disulfide. Ozone generated membrane protein disulfide crosslinks when erythrocyte ghosts, but not intact erythrocytes, were exposed. Ozone had no effect on glucose uptake and did not change oxyhemoglobin content of the erythrocytes.  相似文献   

8.
The role of glutathione in the retention of Ca2+ by liver mitochondria   总被引:2,自引:0,他引:2  
Concentrations of rhein and nitrofurantoin in the micromolar range induce Ca2+ release and the development of increased inner membrane permeability in liver mitochondria. Both compounds inhibit the mitochondrial glutathione reductase causing a depletion of GSH and an accumulation of GSSG in energized mitochondria. Under these conditions, the compounds also alter the oxidation state of pyridine nucleotides, NADH becoming oxidized while NADPH remains reduced. Using rhein or nitrofurantoin, together with t-butyl-hydroperoxide and beta-hydroxybutyrate, it is possible to selectively alter the NAD/NADH, the NADP/NADPH, and the GSSG/GSH ratios and to determine the effect of these different states on the ability of Ca2+ to produce a permeable inner membrane. No correlation between pyridine nucleotide ratios and sensitivity to Ca2+ was observed. Mitochondria are stable to Ca2+ when the GSH content is high, but become permeable when Ca2+ is present and GSH is converted to GSSG. It is proposed that the GSSG/GSH ratio, by controlling the reduction state of critical sulfhydryl groups, regulates lysophospholipid acyltransferase activity and, therefore, the ability of mitochondria to remain impermeable upon activation of the intramitochondrial Ca2+ requiring phospholipase A2.  相似文献   

9.
A rapid, sensitive, and selective method for the quantitation of both oxidized (GSSG) and reduced (GSH) glutathione in biological materials is described. Oxidized and reduced glutathione are resolved by anion-exchange high-performance liquid chromatography and detected with an in-line, recycling postcolumn reaction. The recycling reaction specifically amplifies the response to oxidized and reduced glutathione 20-100 times over that obtained with a stoichiometric reaction, permitting the detection of 2 pmol glutathione. Oxidized and reduced glutathione levels were measured in rat liver and in dog heart mitochondria. Special precautions are necessary to avoid artifacts which lead to either underestimation or overestimation of GSSG levels. GSH/GSSG ratios of approximately 100-300 were observed in samples prepared from rapidly frozen rat liver. Somewhat higher GSH/GSSG ratios were observed in isolated dog heart mitochondria.  相似文献   

10.
The reduced glutathione (GSH)/oxidized glutathione (GSSG) redox state is thought to function in signaling of detoxification gene expression, but also appears to be tightly regulated in cells under normal conditions. Thus it is not clear that the magnitude of change in response to physiologic stimuli is sufficient for a role in redox signaling under nontoxicologic conditions. The purpose of this study was to determine the change in 2GSH/GSSG redox during signaling of differentiation and increased detoxification enzyme activity in HT29 cells. We measured GSH, GSSG, cell volume, and cell pH, and we used the Nernst equation to determine the changes in redox potential Eh of the 2GSH/GSSG pool in response to the differentiating agent, sodium butyrate, and the detoxification enzyme inducer, benzyl isothiocyanate. Sodium butyrate caused a 60-mV oxidation (from -260 to -200 mV), an oxidation sufficient for a 100-fold change in protein dithiols:disulfide ratio. Benzyl isothiocyanate caused a 16-mV oxidation in control cells but a 40-mV oxidation (to -160 mV) in differentiated cells. Changes in GSH and mRNA for glutamate:cysteine ligase did not correlate with Eh; however, correlations were seen between Eh and glutathione S-transferase (GST) and nicotinamide adenine dinucleotide phosphate (NADPH):quinone reductase activities (N:QR). These results show that 2GSH/GSSG redox changes in response to physiologic stimuli such as differentiation and enzyme inducers are of a sufficient magnitude to control the activity of redox-sensitive proteins. This suggests that physiologic modulation of the 2GSH/GSSG redox poise could provide a fundamental parameter for the control of cell phenotype.  相似文献   

11.
The peroxidase catalyzed oxidation of certain drugs in the presence of glutathione (GSH) resulted in extensive oxidation to oxidized glutathione (GSSG). Extensive oxygen uptake ensued and thiyl radicals could be trapped. Only catalytic amounts of drugs were required indicating a redox cycling mechanism. Active drugs included phenothiazines, aminopyrine, p-phenetidine, acetaminophen and 4-N,N-(CH3)2-aminophenol. Other drugs, including dopamine and alpha-methyl dopa, did not catalyse oxygen uptake, nor were GSSG or thiyl radicals formed. Instead, GSH was depleted by GSH conjugate formation. Drugs of the former group, e.g. acetaminophen, aminopyrine or N,N-(CH3)2-aniline have also been found by other investigators to form GSSG and hydrogen peroxide when added to hepatocytes or when perfused through an isolated liver. Although cytochrome P-450 normally catalyses a two-electron oxidation of drugs, serious consideration should be given for some one-electron oxidation resulting in radical formation, oxygen activation and GSSG formation.  相似文献   

12.
Incubation of isolated hepatocytes in the presence of either the parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its putative toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) led to a depletion of intracellular reduced glutathione (GSH), which was mostly recovered as glutathione disulfide (GSSG). However, both MPTP- and MPP+-induced glutathione perturbances were relatively unaffected by the prior inhibition of glutathione reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), suggesting that intracellular oxidation was not the major mechanism involved in the GSH loss. Inclusion of cystine in the incubation mixtures revealed a time-dependent formation of cysteinyl glutathione (CySSG), indicating that an increased efflux was mostly responsible for the MPTP- and MPP+-induced GSH depletion. Therefore, the measurement of GSSG, which is apparently formed extracellularly, was not associated with oxidative stress.  相似文献   

13.
The reactions of glutathione (GSH) and glutathione radicals with a series of methyl-substituted 1,4-benzoquinones and 1,4-benzoquinone have been studied. It was found that by mixing excess benzoquinone with glutathione at pH above 6.5, the products formed were complex and unstable. All of the other experiments were carried out at pH 6.0, where the main product was stable for several hours. Stopped-flow analysis allowed the measurement of the rates of the rapid reactions between GSH and the quinones, and the products were monitored by High Performance Liquid Chromatography (HPLC). The rates of the reactions vary by five orders of magnitude and must be influenced by steric factors as well as changes in the redox states. It was observed that simple hydroquinones were not formed when the different benzoquinones were mixed with excess GSH and suggests that the initial reaction is addition/reduction rather than electron transfer. In the presence of excess quinone, the hydroquinone of the glutathione conjugate is oxidized back to its quinone. The rates of the reaction were measured. By using the technique of pulse radiolysis, it was possible to measure the reduction of the quinones by GSSG.- and the oxidation of hydroquinones by GS(.). It is proposed that the appearance of GSSG in reactions of quinones with glutathione could be due to oxidation of the hydroquinone by oxygen and the subsequent superoxide or H2O2 promoting the oxidation of GSH to GSSG.  相似文献   

14.
Proportions between oxidized and reduced glutathione forms were determined in vacuoles isolated from red beet (Beta vulgaris L.) taproots. The pool of vacuolar glutathione was compared with glutathione pools in isolated plastids and mitochondria. The ratio of glutathione forms was assessed by approved methods, such as fluorescence microscopy with the fluorescent probe monochlorobimane (MCB), high-performance liquid chromatography (HPLC), and spectrophotometry with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB). The fluorescence microscopy revealed comparatively low concentrations of reduced glutathione (GSH) in vacuoles. The GSH content was 104 μM on average, which was lower than the GSH levels in mitochondria (448 μM) and plastids (379 μM). The content of reduced (GSH) and oxidized (GSSG) glutathione forms was quantified by means of HPLC and spectrophotometric assays with DTNB. The glutathione concentrations determined by HPLC in the vacuoles were 182 nmol GSH and 25 nmol GSSG per milligram protein. The respective concentrations of GSH and GSSG in the plastids were 112 and 6 nmol/mg protein and they were 228 and 10 nmol/mg protein in the mitochondria. The levels of GSH determined with DTNB were 1.5 times lower, whereas the amounts of GSSG were, by contrast, 1.5–2 times higher than in the HPLC assays. Although the glutathione redox ratios depended to some extent on the method used, the GSH/GSSG ratios were always lower for vacuoles than for plastids and mitochondria. In vacuoles, the pool of oxidized glutathione was higher than in other organelles.  相似文献   

15.
Horseradish peroxidase-catalyzed oxidation of p-phenetidine in the presence of either glutathione (GSH), cysteine, or N-acetylcysteine led to the production of the appropriate thioyl radical which could be observed using EPR spectroscopy in conjunction with the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. This confirms earlier work using acetaminophen (Ross, D., Albano, E., Nilsson, U., and Moldéus, P. (1984) Biochem. Biophys. Res. Commun. 125, 109-115). The further reactions of glutathionyl radicals (GS.), generated during horseradish peroxidase-catalyzed oxidation of p-phenetidine and acetaminophen in the presence of GSH, were investigated by following kinetics of oxygen uptake and oxidized glutathione (GSSG) formation. Oxygen uptake and GSSG generation were dependent on the concentration of GSH but above that which was required for maximal interaction with the primary amine or phenoxy radical generated during peroxidatic oxidation of p-phenetidine or acetaminophen, suggesting that a secondary GSH-dependent process was responsible for oxygen uptake and GSSG production. GSSG was the only product of thiol oxidation detected during peroxidatic oxidation of p-phenetidine or acetaminophen in the presence of GSH, but under nitrogen saturation conditions its production was reduced to 8 and 33% of the corresponding amounts obtained under aerobic conditions in the cases of p-phenetidine and acetaminophen, respectively. Nitrogen saturation conditions did not affect horseradish peroxidase-catalyzed metabolism. This shows that the main route of GSSG generation in such reactions is not by dimerization of GS. but via mechanism(s) involving oxygen consumption such as via GSSG-. or via GSOOH.  相似文献   

16.
Met-myoglobin is oxidized both by H2O2 and other hydroperoxides to a species with a higher iron valency state and the spectral characteristics of ferryl-myoglobin. Glutathione (GSH) reduces the latter species back to met-myoglobin with parallel oxidation to its disulfide (GSSG) but cannot reduce met-myoglobin to ferrous myoglobin. Under aerobic conditions, the GSH-mediated reduction of ferry-myoglobin is associated with O2 consumption and amounts of GSSG are formed far in excess over that of the peroxide added. Under anaerobic conditions, this ratio is close to unity. These results are interpreted in terms of a one-electron redox process involving the reduction of ferryl-myoglobin to met-myoglobin and the one-electron oxidation of GSH to its thiyl radical. Further reactions of thiyl radicals are influenced by the presence of oxygen which will be the determining factor in the ratio H2O2 added/GSSG formed. It is suggested that, when oxygen is limiting, myoglobin may serve as a protector of muscle cells against peroxides and other oxidants.  相似文献   

17.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

18.
Substrate-depleted rat liver mitochondria will reaccumulate malate, succinate, oxoglutarate, beta-hydroxybutyrate and glutamate if provided with an energy source and Ca(2+) (or Ca(2+) and Mn(2+)). The energy requirement for ion uptake by fresh mitochondria causes a transient oxidation of their NADH and presumably this leads to an increased oxaloacetate concentration. A consequence is the promotion of formation of citrate, which tends to remain in the particles, provided the pH is above 7. Analyses made of systems blocked with fluorocitrate show that citrate accumulates when Ca(2+) is added with the following substrates; (a) pyruvate in the presence of ATP or malate, (b) palmitoyl-l(-)-carnitine in presence of malate and (c) oxoglutarate. Lowering the pH, even to 6.8, causes the citrate to emerge. This could be the basis of a cellular control mechanism. The generation of citrate in response to Ca(2+) can explain the stoichiometry of one proton ejected per Ca(2+) ion taken up. The new carboxyl group formed from acetyl-CoA when it condenses with oxaloacetate provides an internal anionic charge and a proton to emerge when Ca(2+) enters.  相似文献   

19.
Na-Ca exchange activity in bovine cardiac sarcolemmal vesicles was stimulated up to 10-fold by preincubating the vesicles with 1 microM FeSO4 plus 1 mM dithiothreitol (DTT) in a NaCl medium. The increase in activity was not reversed upon removing the Fe and DTT. Stimulation of exchange activity under these conditions was completely blocked by 0.1 mM EDTA or o-phenanthroline; this suggests that the production of reduced oxygen species (H2O2, O2-.,.OH) during Fecatalyzed DTT oxidation might be involved in stimulating exchange activity. In agreement with this hypothesis, the increase in exchange activity in the presence of Fe-DTT was inhibited 80% by anaerobiosis and 60% by catalase. H2O2 (0.1 mM) potentiated the stimulation of Na-Ca exchange by Fe-DTT under both aerobic and anaerobic conditions; H2O2 also produced an increase in activity in the presence of either FeSO4 (1 microM) or DTT (1 mM), but it had no effect on activity by itself. Superoxide dismutase did not block the effects of Fe-DTT on exchange activity; however, the generation of O2-. by xanthine oxidase in the presence of an oxidizable substrate stimulated activity more than 2-fold. Hydroxyl radical scavenging agents (mannitol, sodium formate, sodium benzoate) did not attenuate the stimulation of activity observed with Fe-H2O2. Exchange activity was also stimulated by the simultaneous presence of glutathione (GSH; 1-2 mM) and glutathione disulfide (GSSG; 1-2 mM). Neither GSH nor GSSG was effective by itself and either 0.1 mM EDTA or o-phenanthroline blocked the effects on transport activity of the combination of GSH + GSSG. Treatment of the GSH and GSSG solutions with Chelex ion-exchange resin to remove contaminating transition metal ions reduced (by 40%) the degree of stimulation observed with GSH + GSSG. Full stimulating activity was restored to the Chelex-treated GSH and GSSG solutions by the addition of 1 microM Fe2+; Cu2+ was less effective than Fe2+ whereas Co2+ and Mn2+ were without effect. In the presence of 1 microM Fe2+, GSH alone produced a slight increase in transport activity, but this was markedly enhanced by the addition of Chelex-treated GSSG. The results indicate that stimulation of exchange activity requires the presence of both a reducing agent (DTT, GSH, O-.2, or Fe2+) and an oxidizing agent (H2O2, GSSG, and perhaps O2) and that the effects of these agents are mediated by metal ions (e.g. Fe2+).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Mitochondria isolated from pea (Pisum sativum L.) leaves are able to transport the keto acid, oxaloacetate, from the reaction medium into he mitochondrial matrix at high rates. The rate of uptake by the mitochondria was measured as the rate of disappearance of oxaloacetate from the reaction medium as it was reduced by matrix malate dehydrogenase using NADH provided by glycine oxidation. The oxaloacetate transporter was identifed as being distinct from the dicarboxylate and the α-ketoglutarate transporters because of its inhibitor sensitivities and its inability to interact with other potential substrates. Phthalonate and phthalate were competitive inhibitors of oxaloacetate transport with Ki values of 60 micromolar and 2 millimolar, respectively. Butylmalonate, an inhibitor of the dicarboxylate and α-ketoglutarate transporters, did not alter the rate of oxaloacetate transport. In addition, a 1000-fold excess of malate, malonate, succinate, α-ketoglutarate, or phosphate had little effect on the rate of oxaloacetate transport. The Km for the oxaloacetate transporter was about 15 micromolar with a maximum velocity of over 500 nanomoles per milligram mitochondrial protein/min at 25°C. No requirement for a counter ion to move against oxaloacetate was detected and the highest rates of uptake occurred at alkaline pH values. An equivalent transporter has not been reported in animal mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号