首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
我们用超声法制备了内部包裹阿霉素,表面带有抗人胃癌细胞M85的单克隆抗体3Hll的阿霉素靶向脂质体,研究了这些脂质体经腹腔注射入荷瘤裸鼠之后的组织分布和抑瘤效果.结果表明,靶向脂质体组阿霉素在肿瘤组织的含量明显高于游离阿霉素组,而在心脏中的含量,前者则比后者有所降低。分别在接种M85细胞后5天、13天和25天,按4mg/kg的剂量注射阿霉素靶向脂质体和游离阿霉素,在40天时观察结果。我们发现,无论在动物存活数、肿瘤发生率还是在肿瘤生长速度方面,阿霉素靶向脂质体的抑瘤能力都明显地优于游离阿霉素。  相似文献   

3.
The TCR can detect subtle differences in the strength of interaction with peptide/MHC ligand and transmit this information to influence downstream events in T cell responses. Manipulation of the factor commonly referred to as TCR signal strength can be achieved by changing the amount or quality of peptide/MHC ligand. Recent work has enhanced our understanding of the many variables that contribute to the apparent cumulative strength of TCR stimulation during immunogenic and tolerogenic T cell responses. In this review, we consider data from in vitro studies in the context of in vivo immune responses and discuss in vivo consequences of manipulation of strength of TCR stimulation, including influences on T cell-APC interactions, the magnitude and quality of the T cell response, and the types of fate decisions made by peripheral T cells.  相似文献   

4.
脂质体作为一种药物载体广泛应用于肿瘤药物输送中。配体修饰的靶向脂质体,其靶向配体分子在脂质体表面修饰的构象和密度等参数,对脂质体本身的特性及其体内的靶向效果,有很大的影响。但有关其中的具体相互关系,以及可能的最优条件,国内外文献都尚无定论。据此我们建立了多肽靶向脂质体表面配体修饰的分析方法,并通过影像学手段来研究不同靶向肽含量对脂质体在荷瘤裸鼠中的靶向行为的影响。首先采用孵育插入法将带有多肽的脂质分子插入脂质体表面,用分子筛色谱法分离修饰后的脂质体和未插入的多肽脂质,再用HPLC-ELSD定量各脂质成分,得到多肽靶向脂质体表面的靶向肽密度。而后将修饰有不同密度靶向多肽的荧光脂质体经荷瘤小鼠尾静脉注射,分别在给药前后各时间点对小鼠进行扫描,对扫描得到的图像进行处理并计算AUC、T1/2和MRT等相关药代动力学参数。结果表明,随着脂质体表面多肽密度的增加,即多肽密度大于1.298%的靶向脂质体,其肿瘤部位的荧光AUC、T1/2和MRT都较未修饰的隐形脂质体有所提高,显示其在肿瘤组织中的聚集量增多、停留时间延长,针对肿瘤细胞的特异性作用机制得以彰显。  相似文献   

5.
We have shown that the 12/15-lipoxygenase (12/15-LO) product 12S-hydroxyeicosatetraenoic acid increases monocyte adhesion to human endothelial cells (EC) in vitro. Recent studies have implicated 12/15-LO in mediating atherosclerosis in mice. We generated transgenic mice on a C57BL/6J (B6) background that modestly overexpressed the murine 12/15-LO gene (designated LOTG). LOTG mice had 2.5-fold elevations in levels of 12S-hydroxyeicosatetraenoic acid and a 2-fold increase in expression of 12/15-LO protein in vivo. These mice developed spontaneous aortic fatty streak lesions on a chow diet. Thus, we examined effects of 12/15-LO expression on early events leading to atherosclerosis in these mice. We found that, under basal unstimulated conditions, LOTG EC bound more monocytes than B6 control EC (18 +/- 2 versus 7 +/- 1 monocytes/field, respectively; p < 0.0001). Inhibition of 12/15-LO activity in LOTG EC using a 12/15-LO ribozyme completely blocked monocyte adhesion in LOTG mice. Thus, 12/15-LO activity is required for monocyte/EC adhesion in the vessel wall. Expression of ICAM-1 in aortic endothelia of LOTG mice was increased severalfold. VCAM-1 expression was not changed. In a series of blocking studies, antibodies to alpha(4) and beta(2) integrins in WEHI monocytes blocked monocyte adhesion to both LOTG and B6 control EC. Inhibition of ICAM-1, VCAM-1, and connecting segment-1 fibronectin in EC significantly reduced adhesion of WEHI monocytes to LOTG EC. In summary, these data indicate that EC from LOTG mice are "pre-activated" to bind monocytes. Monocyte adhesion in LOTG mice is mediated through beta(2) integrin and ICAM-1 interactions as well as through VLA-4 and connecting segment-1 fibronectin/VCAM-1 interactions. Thus, 12/15-LO mediates monocyte/EC interactions in the vessel wall in atherogenesis at least in part through molecular regulation of expression of endothelial adhesion molecules.  相似文献   

6.
In order to track hematopoetic cells of all lineages unambiguously at all stages of development, we have developed C57BL/6 mice that express a transgene coding for green fluorescent protein (GFP) under control of the human ubiquitin C promoter. These mice, called UBI-GFP/BL6, express GFP in all tissues examined, with high levels of GFP expression observed in hematopoetic cells. UBI-GFP/BL6 mice are unique in that B cells, T cells, and dendritic cells have distinct levels of GFP fluorescence. In cell transfer experiments, leukocytes from UBI-GFP/BL6 mice are readily identified by FACS or fluorescence microscopy. We demonstrate that transplanted UBI-GFP/BL6 dendritic cells are easily identified in secondary lymphoid tissues. Direct interactions between individual dendritic cells and multiple na?ve CD8+ T cells are observed in lymph nodes within 12 h of cell transfer and require loading of the dendritic cells with the appropriate peptide antigen. Dendritic cells undergo specific morphologic changes following interactions with antigen-specific T cells.  相似文献   

7.
Metabolic responses of brain cells to a stimulus are governed, in part, by their enzymatic specialization and interrelationships with neighboring cells, and local shifts in functional metabolism during brain activation are likely to be influenced by the neurotransmitter system, subcellular compartmentation, and anatomical structure. Selected examples of functional activation illustrate the complexity of metabolic interactions in working brain and of interpretation of changes in brain lactate levels. The major focus of this article is the disproportionately higher metabolism of glucose compared to oxygen in normoxic brain, a phenomenon that occurs during activation in humans and animals. The glucose utilized in excess of oxygen is not fully explained by accumulation of glucose, lactate, or glycogen in brain or by lactate efflux from brain to blood. Thus, any lactate derived from the excess glucose could not have been stoichiometrically exported to and metabolized by neighboring neurons because oxygen consumption would have otherwise increased and matched that of glucose. Metabolic labeling of tricarboxylic acid cycle-derived amino acids increased during brief sensory stimulation, reflecting a rise in oxidative metabolism. Brain glycogen is mainly in astrocytes, and its level falls throughout the stimulus and early post-activation interval. Glycogenolysis cannot be accounted for by lactate accumulation or oxidation; there must be rapid product clearance. Glycogen restoration is slow and diversion of glucose from oxidative pathways for its re-synthesis could reduce the global O(2)/glucose uptake ratio; astrocytes could downshift this ratio for up to an hour after 5 min stimulus. Morphological studies of astrocytes reveal a paucity of cytoplasm and organelles in the fine processes that surround synapses and form gap junction connections with neighboring astrocytes. Specialized regions of astrocytes, e.g. their endfeet and thin peripheral lamellae, are likely to have compartmentalized metabolic activities. Anatomical constraints imposed upon the fine processes might require preferential utilization of glycolysis to satisfy their energy demands, but rapid lactate clearance would then be essential, since its accumulation would inhibit glycolysis. Gap junctional connections between neighboring astrocytes provide a mechanism for rapid metabolite spreading via the astrocytic syncytium and elimination of by-products. Local structure-function relationships need to be incorporated into experimental models of neuron-astrocyte and astrocyte-astrocyte interactions in working brain.  相似文献   

8.
Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.  相似文献   

9.
Saccharomyces cerevisiae contains two SNAP25 paralogues, Sec9 and Spo20, which mediate vesicle fusion at the plasma membrane and the prospore membrane, respectively. Fusion at the prospore membrane is sensitive to perturbation of the central ionic layer of the SNARE complex. Mutation of the central glutamine of the t-SNARE Sso1 impaired sporulation, but does not affect vegetative growth. Suppression of the sporulation defect of an sso1 mutant requires expression of a chimeric form of Spo20 carrying the SNARE helices of Sec9. Mutation of two residues in one SNARE domain of Spo20 to match those in Sec9 created a form of Spo20 that restores sporulation in the presence of the sso1 mutant and can replace SEC9 in vegetative cells. This mutant form of Spo20 displayed enhanced activity in in vitro fusion assays, as well as tighter binding to Sso1 and Snc2. These results demonstrate that differences within the SNARE helices can discriminate between closely related SNAREs for function in vivo.  相似文献   

10.
11.
The kinetics of [14C]sucrose release from multilamellar liposomes of fixed diameter (approx. 0.23 μm) incubated in human plasma (serum and blood) were quantified. Composition was various ratios of phosphatidylcholine, phosphatidic acid and cholesterol with α-tocopherol included as antioxidant. Considerable intra-individual variability was noted for liposome stability in blood and its derived fluids, yet reproducible results were obtained for pooled samples. The destabilizing effects of plasma decreased with increasing lipid concentrations. Results of fitting a kinetic model to the data showed that four of five model parameters were linearly related to liposome cholesterol content. Liposomes depleted plasma of its destabilizing factors, and when pre-incubated with plasma were partially stabilized to the effects of a subsequent plasma addition. Plasma caused a rapid rise in liposome membrane permeability which then declined non-linearly, presumably because of a rearrangement of membrane lipids and adsorbed proteins to form their most stable configuration. the therapeutic availability of drugs administered encapsulated in liposomes, which can be governed by the kinetics of their in vivo extracellular release, may be directly proportional to - and predictable from - the time-course and extent of release in plasma. The kinetic model was used in conjuction with simple pharmacokinetic assumptions to show that the effectiveness of a liposome drug carrier cannot be predicted based simply on its plasma stability; more stable liposomes may not be more effective drug carriers. Interestingly, plasma-induced solute release from liposomes serendipitously mimics an important facet of ideal carrier behavior.  相似文献   

12.
Cholera toxin is a complex protein with a biologically active protein (A subunit) and a cell targeting portion (B subunit). The B subunit is responsible for specific cell binding and entry of the A subunit. One way to limit potential toxicity of the toxin after exposure is to introduce cellular decoys to bind the toxin before it can enter cells. In this study the ganglioside GM1, a natural ligand for cholera toxin, was incorporated into liposomes and the interaction between fluorescent B subunit and the liposome determined. Liposome membrane fluidity was determined to play a major role in the binding between liposomes and the cholera toxin B subunit. Liposomes with lower fluidity demonstrated greater binding with the B subunit. The findings from this study could have important implications on formulation strategies for liposome decoys of toxins.  相似文献   

13.
The small GTPase Rac cycles between the membrane and the cytosol as it is activated by nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). Solubility in the cytosol is conferred by binding of Rac to guanine-nucleotide dissociation inhibitors (GDIs). To analyze the in vivo dynamics of Rac, we developed a photobleaching method to measure the dissociation rate constant (k(off)) of membrane-bound GFP-Rac. We find that k(off) is 0.048 s(-1) for wtRac and approximately 10-fold less (0.004 s(-1)) for G12VRac. Thus, the major route for dissociation is conversion of membrane-bound GTP-Rac to GDP-Rac; however, dissociation of GTP-Rac occurs at a detectable rate. Overexpression of the GEF Tiam1 unexpectedly decreased k(off) for wtRac, most likely by converting membrane-bound GDP-Rac back to GTP-Rac. Both overexpression and small hairpin RNA-mediated suppression of RhoGDI strongly affected the amount of membrane-bound Rac but surprisingly had only slight effects on k(off). These results indicate that RhoGDI controls Rac function mainly through effects on activation and/or membrane association.  相似文献   

14.
We developed a protein-proximity assay in yeast based on fusing a histone lysine methyltransferase onto a bait and its substrate onto a prey. Upon binding, the prey is stably methylated and detected by methylation-specific antibodies. We applied this approach to detect varying interaction affinities among proteins in a mitogen-activated protein kinase pathway and to detect short-lived interactions between protein phosphatase 2A and its substrates that have so far escaped direct detection.  相似文献   

15.
RNA-binding proteins (RBPs) impact every process in the cell; they act as splicing and polyadenylation factors, transport and localization factors, stabilizers and destabilizers, modifiers, and chaperones. RNA-binding capacity can be attributed to numerous protein domains that bind a limited repertoire of short RNA sequences. How is specificity achieved in cells? Here we focus on recent advances in determining the RNA-binding properties of proteins in vivo and compare these to in vitro determinations, highlighting insights into how endogenous RNA molecules are recognized and regulated. We also discuss the crucial contribution of structural determinations for understanding RNA-binding specificity and mechanisms.  相似文献   

16.
The clearance rate of liposomal drugs from the circulation is determined by the rate and extent of both drug release and uptake of liposomes by cells of the mononuclear phagocyte system (MPS). Intravenously injected liposomes initially come into contact with serum proteins. The interaction of liposomes with serum proteins is thought to play a critical role in the liposome clearance. Therefore, in this review, we focus on the role of serum proteins, so-called opsonins, that enhance the clearance of liposomes, when bound to liposomes. In addition to opsonin-dependent liposome clearance, opsonin-independent liposome clearance is also reviewed. As opposed to the conventional (non-surface modification) liposomes, we briefly address the issue of the accelerated clearance of PEGylated-liposomes (sterically stabilized liposomes, long-circulating liposomes) on repeated injection, a process that has recently been observed.  相似文献   

17.
Adsorption of serum proteins to the liposomal surface plays a critical role in the clearance of liposomes from the blood circulation. In this review, we will discuss the role of the liposomal opsonins proposed so far in liposome clearance. Additional, related topics that will be addressed are the cell-surface receptors that might be involved in liposome elimination from the blood compartment and the effect of poly(ethylene glycol) (PEG) modification on prevention of liposome opsonization.  相似文献   

18.
Adsorption of serum proteins to the liposomal surface plays a critical role in the clearance of liposomes from the blood circulation. In this review, we will discuss the role of the liposomal opsonins proposed so far in liposome clearance. Additional, related topics that will be addressed are the cell-surface receptors that might be involved in liposome elimination from the blood compartment and the effect of poly(ethylene glycol) (PEG) modification on prevention of liposome opsonization.  相似文献   

19.
L-selectin mediates the initial capture and subsequent rolling of leukocytes along inflamed vascular endothelium and mediates lymphocyte migration to peripheral lymphoid tissues. Leukocyte activation induces rapid endoproteolytic cleavage of L-selectin from the cell surface, generating soluble L-selectin (sL-selectin). Because human sL-selectin retains ligand-binding activity in vitro, mouse sL-selectin and its in vivo relevance were characterized. Comparable with humans, sL-selectin was present in adult C57BL/6 mouse sera at approximately 1.7 micro g/ml. Similar levels of sL-selectin were present in sera from multiple mouse strains, despite their pronounced differences in cell surface L-selectin expression levels. Adhesion molecule-deficient mice prone to spontaneous chronic inflammation and mice suffering from leukemia/lymphoma had 2.5- and 20-fold increased serum sL-selectin levels, respectively. By contrast, serum sL-selectin levels were reduced by 70% in Rag-deficient mice lacking mature lymphocytes. The majority of serum sL-selectin had a molecular mass of 65-75 kDa, consistent with its lymphocyte origin. Slow turnover may explain the relatively high levels of sL-selectin in vivo. The t(1/2) of sL-selectin, assessed by transferring sera from wild-type mice into L-selectin-deficient mice and monitoring serum sL-selectin levels by ELISA, was >20 h, and it remained detectable for longer than 1 wk. Short-term in vivo lymphocyte migration assays demonstrated that near physiologic levels ( approximately 0.9 micro g/ml) of sL-selectin decreased lymphocyte migration to peripheral lymph nodes by >30%, with dose-dependent inhibition occurring with increasing sL-selectin concentrations. These results suggest that sL-selectin influences lymphocyte migration in vivo and that the increased sL-selectin levels present in certain pathologic conditions may adversely affect leukocyte migration.  相似文献   

20.
Mapping actin surfaces required for functional interactions in vivo   总被引:19,自引:8,他引:11       下载免费PDF全文
An in vivo strategy to identify amino acids of actin required for functional interactions with actin-binding proteins was developed. This approach is based on the assumption that an actin mutation that specifically impairs the interaction with an actin-binding protein will cause a phenotype similar to a null mutation in the gene that encodes the actin-binding protein. 21 actin mutations were analyzed in budding yeast, and specific regions of actin subdomain 1 were implicated in the interaction with fimbrin, an actin filament-bundling protein. Mutations in this actin subdomain were shown to be, like a null allele of the yeast fimbrin gene (SAC6), lethal in combination with null mutations in the ABP1 and SLA2 genes, and viable in combination with a null mutation in the SLA1 gene. Biochemical experiments with act1-120 actin (E99A, E100A) verified a defect in the fimbrin-actin interaction. Genetic interactions between mutant alleles of the yeast actin gene and null alleles of the SAC6, ABP1, SLA1, and SLA2 genes also demonstrated that the effects of the 21 actin mutations are diverse and allowed four out of seven pseudo-wild-type actin alleles to be distinguished from the wild-type gene for the first time, providing evidence for functional redundancy between different surfaces of actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号