首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleocapsids of hepatitis B virus (HBV) are made of 180 or 240 subunits of core proteins or known as core antigens (HBcAg). A fusion bacteriophage bearing the WSFFSNI sequence that interacts tightly to HBcAg was employed as a diagnostic reagent for the detection of the antigen using the phage-enzyme-linked immunosorbent (phage-ELISA), dot blot and immunoprecipitation assays. The results from phage-ELISA and dot blot assay showed that as low as 10 ng of HBcAg can be detected optimally by 1.0x10(12) pfu/ml fusion M13 bacteriophage. The sensitivity of the dot blot assay corresponds with that of the phage-ELISA. HBcAg in HBV positive serum samples can also be detected using the fusion phage via the phage-ELISA and phage-dot blot assay. The phage cross-linked to cyanogen bromide (CNBr) activated agarose can also be used to precipitate HBcAg in bacterial lysate. The optimum amount of phage needed for cross-linking to 1 g of agarose is about 7.0x10(6) pfu/ml which could also precipitate purified and unpurified HBcAg in bacterial lysate. This study demonstrates the potential of fusion bacteriophage bearing the sequence WSFFSNI as a diagnostic reagent and a ligand for the detection and purification of HBcAg respectively.  相似文献   

2.
DNA-negative Dane particles have been observed in hepatitis B virus (HBV)-infected sera. The capsids of the empty particles are thought to be composed of core protein but have not been studied in detail. In the present study, the protein composition of the particles was examined using new enzyme immunoassays for the HBV core antigen (HBcAg) and for the HBV precore/core proteins (core-related antigens, HBcrAg). HBcrAg were abundant in fractions slightly less dense than HBcAg and HBV DNA. Three times more Dane-like particles were observed in the HBcrAg-rich fraction than in the HBV DNA-rich fraction by electron microscopy. Western blots and mass spectrometry identified the HBcrAg as a 22-kDa precore protein (p22cr) containing the uncleaved signal peptide and lacking the arginine-rich domain that is involved in binding the RNA pregenome or the DNA genome. In sera from 30 HBV-infected patients, HBcAg represented only a median 10.5% of the precore/core proteins in enveloped particles. These data suggest that most of the Dane particles lack viral DNA and core capsid but contain p22cr. This study provides a model for the formation of the DNA-negative Dane particles. The precore proteins, which lack the arginine-rich nucleotide-binding domain, form viral RNA/DNA-negative capsid-like particles and are enveloped and released as empty particles.  相似文献   

3.
随着对NIRF(Np95/ICBP-90 like RING finger protein)研究的深入,其功能已涉及细胞癌变进程以及表观遗传学等领域. 近期研究显示,NIRF能与HBc (hepatitis B virus core protein )相互结合,但其对乙型肝炎病毒(HBV)抗原表达的影响尚不明确. 本文通过转染pAAV-HBV1.3质粒和高压水动力法尾静脉注射BALB/C小鼠,建立乙型肝炎病毒的细胞和动物模型,研究NIRF对乙型肝炎病毒抗原表达的影响. ELISA检测细胞上清和小鼠血清中HBsAg、HBeAg的分泌和表达情况,Western 印迹或免疫组化染色技术检测HBcAg. 结果显示,乙型肝炎病毒抗原分泌的细胞以及小动物模型建立成功,并且无论在体内外,NIRF都能对它们的表达起抑制作用,期待能为后续的HBV致病机理以及治疗药物的研究提供支持与帮助.  相似文献   

4.
Newman M  Suk FM  Cajimat M  Chua PK  Shih C 《Journal of virology》2003,77(24):12950-12960
Instead of displaying the wild-type selective export of virions containing mature genomes, human hepatitis B virus (HBV) mutant I97L, changing from an isoleucine to a leucine at amino acid 97 of HBV core antigen (HBcAg), lost the high stringency of selectivity in genome maturity during virion export. To understand the structural basis of this so-called "immature secretion" phenomenon, we compared the stability and morphology of self-assembled capsid particles from the wild-type and mutant I97L HBV, in either full-length (HBcAg1-183) or truncated core protein contexts (HBcAg1-149 and HBcAg1-140). Using negative staining and electron microscopy, full-length particles appear as "thick-walled" spherical particles with little interior space, whereas truncated particles appear as "thin-walled" spherical particles with a much larger inner space. We found no significant differences in capsid stability between wild-type and mutant I97L particles under denaturing pH and temperature in either full-length or truncated core protein contexts. In general, HBV capsid particles (HBcAg1-183, HBcAg1-149, and HBcAg1-140) are very robust but will dissociate at pH 2 or 14, at temperatures higher than 75 degrees C, or in 0.1% sodium dodecyl sulfate (SDS). An unexpected upshift banding pattern of the SDS-treated full-length particles during agarose gel electrophoresis is most likely caused by disulfide bonding of the last cysteine of HBcAg. HBV capsids are known to exist in natural infection as dimorphic T=3 or T=4 icosahedral particles. No difference in the ratio between T=3 (78%) and T=4 particles (20.3%) are found between wild-type HBV and mutant I97L in the context of HBcAg1-140. In addition, we found no difference in capsid stability between T=3 and T=4 particles successfully separated by using a novel agarose gel electrophoresis procedure.  相似文献   

5.
The core antigen (HBcAg) of hepatitis B Virus (HBV) can be expressed in Escherichia coil where it assembles into icosahedral particles containing 240 or 180 subunits. Analysis of the two kinds of particles by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that a substantial proportion of their subunits were smaller than the full-length HBcAg monomer and of variable size, but all had the same N-terminal sequence showing that the smaller species were heterogeneous in their arginine-rich C-terminal regions. Around 50% of these arginine residues are encoded by the triplet AGA which is rare in E. coli. Supplementation of the level of AGA tRNA in the cell by transformation with plasmids expressing the T4 AGA tRNA gene significantly enhanced the yield of HBcAg. Fusion phage carrying a ligand specific for HBcAg showed no significant difference in the affinity for the two sizes of HBcAg particles, but in similar reactions in solution HBV surface antigen exhibited differential affinities for the same two HBcAg preparations.  相似文献   

6.
7.
BackgroundChronic Hepatitis B virus (HBV) infection can lead to the development of chronic hepatitis, cirrhosis and hepatocellular carcinoma. We hypothesized that HBV might accelerate hepatocyte ageing and investigated the effect of HBV on hepatocyte cell cycle state and biological age. We also investigated the relation between inflammation, fibrosis and cell cycle phase.MethodsLiver samples from patients with chronic HBV (n = 91), normal liver (n = 55) and regenerating liver (n = 15) were studied. Immunohistochemistry for cell cycle phase markers and HBV antigens was used to determine host cell cycle phase. Hepatocyte-specific telomere length was evaluated by quantitative fluorescent in-situ hybridization (Q-FISH) in conjunction with hepatocyte nuclear area and HBV antigen expression. The effects of induced cell cycle arrest and induced cellular senescence on HBV production were assessed in vitro.Results13.7% hepatocytes in chronic HBV had entered cell cycle, but expression of markers for S, G2 and M phase was low compared with regenerating liver. Hepatocyte p21 expression was increased (10.9%) in chronic HBV and correlated with liver fibrosis. Mean telomere length was reduced in chronic HBV compared to normal. However, within HBV-affected livers, hepatocytes expressing HBV antigens had longer telomeres. Telomere length declined and hepatocyte nuclear size increased as HBV core antigen (HBcAg) expression shifted from the nucleus to cytoplasm. Nuclear co-expression of HBcAg and p21 was not observed. Cell cycle arrest induced in vitro was associated with increased HBV production, in contrast to
in vitro induction of cellular senescence, which had no effect.ConclusionChronic HBV infection was associated with hepatocyte G1 cell cycle arrest and accelerated hepatocyte ageing, implying that HBV induced cellular senescence. However, HBV replication was confined to biologically younger hepatocytes. Changes in the cellular location of HBcAg may be related to the onset of cellular senescence.  相似文献   

8.
I Saito  Y Oya    H Shimojo 《Journal of virology》1986,58(2):554-560
Ad5-HBL is a type 5 adenovirus bearing the large BglII fragment (2.8 kilobases; 87% of the total genome) of hepatitis B virus (HBV), subtype adr. Eight HBV RNAs expressed in HeLa cells infected with Ad5-HBL were mapped by the nuclease S1 technique. Three major RNAs spanning 2.4, 2.0, and 0.7 kilobases of the HBV sequences cover the coding regions of "presurface" plus surface antigen, surface antigen alone, and "X" protein, respectively. The 5' segment of an RNA which could code for core antigen (HBcAg) was also detected. All major HBV RNAs initiate from mutually exclusive 5' ends, terminate at the unique 3' end within the HBcAg coding region (except readthrough species), and have no spliced deletion, forming a novel RNA family structure. No TATA box-like sequences were found near the 5' end of these RNAs, except in the case of the 2.4-kilobase RNA. About two thirds of total HBV RNA does not terminate at the mapped 3'-end position, suggesting the termination signal is functionally inefficient. Since the potential 5' end of HBcAg mRNA was mapped at the same position as the minus-strand nick of HBV DNA previously reported, we propose a model that requires inefficient poly(A) addition to produce an RNA which serves both as HBcAg mRNA and as the putative RNA template of minus-strand DNA synthesis in the HBV life cycle.  相似文献   

9.
To evaluate the specificity of cellular immune response to hepatitis B virus (HBV) Ag in patients with chronic HBV infection, we have measured IFN-gamma production and proliferation of PBMC of 16 patients with chronic active hepatitis (CAH), 17 asymptomatic carriers of HBV (ASC), 6 anti-hepatitis B surface (HBs)-positive subjects, and 6 control individuals with ELISA procedure and [3H]thymidine incorporation. There was no significant increase in the mean proliferative response to recombinant HB surface and core Ag (rHBsAg and rHBcAg), nor was IFN-gamma production elicited with rHBsAg in any group. In contrast, PBMC of HBeAg-positive and anti-HBe-positive CAH patients, and anti-hepatitis B "e" Ag (HBe)-positive ASC showed significantly enhanced IFN-gamma production in response to HBcAg, whereas those of HBeAg-positive ASC and anti-HBs-positive subjects did not respond to HBcAg. The maximal response was observed in a 5-day culture with 500 ng/ml of rHBcAg when assessed by stimulation index value. Monocytes did not demonstrate an increased suppressor or helper activity for IFN-gamma production in these patients. T cell subset fractionation revealed that CD4+ cells were main population of IFN-gamma production specific for HBcAg and CD8+ cells did not suppress IFN-gamma production of CD4+ cells. Furthermore, CD4+ cells of HBeAg-positive ASC generated lesser amounts of IFN-gamma than HBeAg-positive CAH patients did. These results show that the measurement of IFN-gamma production is useful to determine cellular immune response to HBV Ag and suggest that IFN-gamma production depends on the helper activity of CD4+ T cells sensitized to HBcAg.  相似文献   

10.
The relationships among the core antigen polypeptides of hepatitis B virus (HBV) and ground squirrel hepatitis virus (GSHV) were studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic peptide mapping. The major core antigen polypeptides of liver-derived HBV (p22) and GSHV (p20.5) shared 56% of the spots in their peptide maps. Comparison of hepatitis B core antigen (HBcAg) p19 or ground squirrel hepatitis core antigen (GSHcAg) p16.5 with their respective major polypeptides indicated that these components probably resulted from cleavage of the major polypeptide of each virus. Other polypeptides smaller than the major component of each virus were often faint on polyacrylamide gels and probably resulted from the cleavage or degradation of components larger than p22 of HBcAg or p20.5 of GSHcAg, since their peptide maps contained spots unique to these high-molecular-weight components. p26 of GSHcAg and p27.5 of HBcAg shared approximately two-thirds of the spots on their peptide maps with those of their respective major core polypeptides. Furthermore, p37.5 of GSHcAg and p40 of HBcAg shared about 60% homology with their respective major polypeptides, and also shared many of the spots that were unique to p26 of GSHcAg or p27.5 of HBcAg but were not found in the peptide map of their respective core antigen polypeptides. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis bands larger than 40,000 daltons were variably present, and peptide mapping indicated that these were aggregates of various smaller core antigen-associated polypeptides. The results suggest that p40 of HBcAg and p37.5 of GSHcAg are the largest unique polypeptides in these core particles, and that they are encoded for by the genome of each virus. That a subset of the spots unique to p40 or p37.5 was also found in p27.5 of HBcAg or p26 of GSHcAg, respectively, as compared to the major core polypeptides, also suggests that p27.5 and p26 are unique proteins encoded by the genome of each virus. It is proposed that the core antigen gene of each virus is larger than that which would encode the major polypeptide of each virus, and that the genetic organizations of the core genes of HBV and GSHV are very similar.  相似文献   

11.
The hepatitis B virus (HBV) core (HBc) antigen (HBcAg) is a highly immunogenic subviral particle. Studies with mice have shown that HBcAg can bind and activate B cells in a T-cell-independent fashion. By using a human peripheral blood leukocyte (hu-PBL)-Nod/LtSz-Prkdc(scid)/Prkdc(scid) (NOD/SCID) mouse model, we show here that HBcAg also activates human B cells in vivo in a T-cell-independent way. HBcAg was capable of inducing the secretion of HBcAg-binding human immunoglobulin M (IgM) in naive human B cells derived from adult human and neonatal (cord blood) donors when these hu-PBL were transferred directly into the spleens of optimally conditioned NOD/SCID mice. No such responses were found in chimeric mice that were given hu-PBL plus HBV e antigen or hu-PBL plus phosphate-buffered saline. In addition, HBcAg activated purified human B cells to produce anti-HBc IgM in the chimeric mice, thus providing evidence that HBcAg behaves as a T-cell-independent antigen in humans. However, HBcAg-activated hu-PBL from naive donors were unable to switch from IgM to IgG production, even after a booster dose of HBcAg. Production of HBcAg-specific IgG could only be induced when hu-PBL from subjects who had recovered from or had an ongoing chronic HBV infection were transferred into NOD/SCID mice. Our data suggest that humans also have a population of naive B cells that can bind HBcAg and is subsequently activated to produce HBcAg-binding IgM.  相似文献   

12.
There are estimated to be 350 million chronic carriers of hepatitis B infection worldwide. Patients with chronic hepatitis B are at risk of liver cirrhosis with associated mortality because of hepatocellular carcinoma and other complications. An important goal, therefore, is the development of an effective therapeutic vaccine against chronic hepatitis B virus (HBV). A major barrier to the development of such a vaccine is the impaired immune response to HBV antigens observed in the T cells of affected patients. One strategy to overcome these barriers is to activate mucosal T cells through the use of nasal vaccination because this may overcome the systemic immune downregulation that results from HBV infection. In addition, it may be beneficial to present additional HBV epitopes beyond those contained in the traditional hepatitis B surface antigen (HbsAg) vaccine, for example, by using the hepatitis B core antigen (HBcAg). This is advantageous because HBcAg has a unique ability to act as a potent Th1 adjuvant to HbsAg, while also serving as an immunogenic target. In this study we describe the effect of coadministration of HBsAg and HBcAg as part of a strategy to develop a more potent and effective HBV therapeutic vaccine.  相似文献   

13.
旨在以乙肝病毒 (HBV) 的主要结构蛋白-表面蛋白 (HBsAg) 和核心蛋白 (HBcAg) 作为抗原设计DNA疫苗,研究热休克蛋白HSP70和gp96作为新型免疫佐剂增强疫苗的细胞免疫和体液免疫水平。利用酶联免疫斑点实验、流式细胞内因子染色、3H-TdR实验、酶联免疫吸附实验技术分析,结果显示HSP70和gp96可使疫苗的细胞免疫水平提高1~6倍,提高体液免疫水平20%~60%。研究结果为设计以HSP70和gp96作为免疫佐剂的新型乙肝治疗性疫苗提供了依据。  相似文献   

14.
The functional significance of naturally occurring variants of human hepatitis B virus (HBV) remains largely unknown. Previously, we reported an immature secretion phenotype caused by a highly frequent mutation at amino acid 97 of the HBV core (capsid) protein (HBcAg). This phenotype is characterized by a nonselective and excessive secretion of virions containing an immature genome of single-stranded viral DNA. To extend our study of virion secretion to other naturally occurring variants, we have characterized mutations at HBcAg codons 5, 38, and 60 via site-directed mutagenesis. Although the phenotype of the mutation at codon 38 is nearly identical to that for the wild-type virus, our study reveals that a single mutation at codon 5 or 60 exhibits a new extracellular phenotype with significantly reduced virion secretion yet maintains normal intracellular viral DNA replication. A complementation study indicates that the mutant core protein alone is sufficient for the "low-secretion" phenotype. Furthermore, the low-secretion phenotype of the codon 5 mutant appears to be induced by the loss of a parental proline residue, rather than by the gain of a new amino acid. Our study underscores the core protein as another crucial determinant in virion secretion, in addition to the known envelope proteins. Our present results suggest that a very precise structure of both alpha-helical and nonhelical loop regions of the entire HBcAg molecule is important for virion secretion. The low-secretion variants may contribute to the phenomenon of gradually decreasing viremia in chronic carriers during the late phase of persistent infection.  相似文献   

15.
The nucleocapsid of the hepatitis B virus (HBV) is composed of 180 to 240 copies of the HBV core (HBc) protein. HBc antigen (HBcAg) capsids are extremely immunogenic and can activate naive B cells by cross-linking their surface receptors. The molecular basis for the interaction between HBcAg and naive B cells is not known. The functionality of this activation was evidenced in that low concentrations of HBcAg, but not the nonparticulate homologue HBV envelope antigen (HBeAg), could prime naive B cells to produce anti-HBc in vitro with splenocytes from HBcAg- and HBeAg-specific T-cell receptor transgenic mice. The frequency of these HBcAg-binding B cells was estimated by both hybridoma techniques and flow cytometry (B7-2 induction and direct HBcAg binding) to be approximately 4 to 8% of the B cells in a naive spleen. Cloning and sequence analysis of the immunoglobulin heavy- and light-chain variable (VH and VL) domains of seven primary HBcAg-binding hybridomas revealed that six (86%) were related to the murine and human VH1 germ line gene families and one was related to the murine VH3 family. By using synthetic peptides spanning three VH1 sequences, one VH3 sequence, and one VLkappaV sequence, a linear motif in the framework region 1 (FR1)complementarity-determining region 1 (CDR1) junction of the VH1 sequence was identified that bound HBcAg. Interestingly, the HBcAg-binding motif was present in the VL domain of the HBcAg-binding VH3-encoded antibody. Finally, two monoclonal antibodies containing linear HBcAg-binding motifs blocked HBcAg presentation by purified naive B cells to purified HBcAg-primed CD4(+) T cells. Thus, the ability of HBcAg to bind and activate a high frequency of naive B cells seems to be mediated through a linear motif present in the FR1-CDR1 junction of the heavy or light chain of the B-cell surface receptor.  相似文献   

16.
Disease-specific serum miRNA profiles may serve as biomarkers and might reveal potential new avenues for therapy. An HBV-specific serum miRNA profile associated with HBV surface antigen (HBsAg) particles has recently been reported, and AGO2 and miRNAs have been shown to be stably associated with HBsAg in serum. We identified HBV-associated serum miRNAs using the Toray 3D array system in 10 healthy controls and 10 patients with chronic hepatitis B virus (HBV) infection. 19 selected miRNAs were then measured by quantitative RT-PCR in 248 chronic HBV patients and 22 healthy controls. MiRNA expression in serum versus liver tissue was also compared using biopsy samples. To examine the role of AGO2 during the HBV life cycle, we analyzed intracellular co-localization of AGO2 and HBV core (HBcAg) and surface (HBsAg) antigens using immunocytochemistry and proximity ligation assays in stably transfected HepG2 cells. The effect of AGO2 ablation on viral replication was assessed using siRNA. Several miRNAs, including miR-122, miR-22, and miR-99a, were up-regulated at least 1.5 fold (P<2E-08) in serum of HBV-infected patients. AGO2 and HBcAg were found to physically interact and co-localize in the ER and other subcellular compartments. HBs was also found to co-localize with AGO2 and was detected in multiple subcellular compartments. Conversely, HBx localized non-specifically in the nucleus and cytoplasm, and no interaction between AGO2 and HBx was detected. SiRNA ablation of AGO2 suppressed production of HBV DNA and HBs antigen in the supernatant.

Conclusion

These results suggest that AGO2 and HBV-specific miRNAs might play a role in the HBV life cycle.  相似文献   

17.
BACKGROUND: Many clinical trials show that DNA vaccine potency needs to be greatly enhanced. We have reported that the N-terminal fragment of glycoprotein 96 (gp96) is able to produce an adjuvant effect for production of cytotoxic T-lymphocytes (CTLs) with hepatitis B virus (HBV)-specific peptides. Here, we report a new strategy for HBV DNA vaccine design using a partial gp96 sequence. MATERIALS AND METHODS: We linked the N-terminal 1-355aa (N355) of gp96 to HBV genes encoding for structural proteins, the major S and middle S2S envelope proteins and the truncated core HBcAg (1-149aa). ELISPOT, tetramer staining and intracellular IFN-gamma assay were performed to analyze the induced cellular immune responses of our DNA constructs in BALB/c mice and HLA-A2 transgenic mice. The relative humoral immune responses were analyzed in different IgG isotypes. RESULTS: The fusion genes induced 2- to 6-fold higher HBV-specific CD8(+) T cells as compared to the antigens alone. There was an approximate 10-fold decrease in the humoral immune responses with fusion genes based on HBV envelope proteins. Interestingly, the decreased humoral immune responses were not observed when antigens and plasmid encoding N355 were co-delivered. However, an approximate 20-fold higher antibody level was induced when linking N355 to a truncated HBcAg. Immunization by intramuscular injection resulted in predominantly IgG2a antibodies, which indicated that these vaccines preferentially prime Th1 responses. CONCLUSIONS: We constructed highly immunogenic fusions by linking the N-terminal fragment of gp96 to HBV antigens. Our results imply that the N-terminal fragment of gp96 may be used as a molecular adjuvant to enhance the potency of DNA vaccines.  相似文献   

18.
Cheng CP  Lee PF  Liu WC  Wu IC  Chin CY  Chang TT  Tseng VS 《PloS one》2012,7(2):e32553
Hepatitis B virus (HBV) is one of the most common DNA viruses that can cause aggressive hepatitis, cirrhosis and hepatocellular carcinoma. Although many people are persistently infected with HBV, the kinetics in serum levels of viral loads and the host immune responses vary from person to person. HBV precore/core open reading frame (ORF) encoding proteins, hepatitis B e antigen (HBeAg) and core antigen (HBcAg), are two indicators of active viral replication. The aim of this study was to discover a variety of amino acid covariances in responses to viral kinetics, seroconversion and genotypes during the course of HBV infection. A one year follow-up study was conducted with a total number of 1,694 clones from 23 HBeAg-positive chronic hepatitis B patients. Serum alanine aminotransferase, HBV DNA and HBeAg levels were measured monthly as criteria for clustering patients into several different subgroups. Monthly derived multiple precore/core ORFs were directly sequenced and translated into amino acid sequences. For each subgroup, time-dependent covariances were identified from their time-varying sequences over the entire follow-up period. The fluctuating, wavering, HBeAg-nonseroconversion and genotype C subgroups showed greater degrees of covariances than the stationary, declining, HBeAg-seroconversion and genotype B. Referring to literature, mutation hotspots within our identified covariances were associated with the infection process. Remarkably, hotspots were predominant in genotype C. Moreover, covariances were also identified at early stage (spanning from baseline to a peak of serum HBV DNA) in order to determine the intersections with aforementioned time-dependent covariances. Preserved covariances, namely representative covariances, of each subgroup are visually presented using a tree-based structure. Our results suggested that identified covariances were strongly associated with viral kinetics, seroconversion and genotypes. Moreover, representative covariances may benefit clinicians to prescribe a suitable treatment for patients even if they have no obvious symptoms at the early stage of HBV infection.  相似文献   

19.
K Matsuda  S Satoh    H Ohori 《Journal of virology》1988,62(9):3517-3521
The characteristics of binding of hepatitis B core antigen (HBcAg) and hepatitis B e antigen (HBeAg) polypeptides to hepatitis B virus (HBV) DNA were analyzed. HBcAg polypeptide from recombinant HBV core particles and HBeAg polypeptide from partially purified serum HBeAg were prepared and verified to have molecular weights of 21,500 (P21.5) and of 17,000 (P17) and 18,000 (P18), respectively, by immunoblot analysis. By reaction of these proteins on a nitrocellulose membrane with cloned 32P-HBV DNA, it was revealed that the HBeAg polypeptide, which lacks the C-terminal 34 amino acids of P21.5, as well as the HBcAg polypeptide, bound to the DNA. The secondary structures of nucleocapsid proteins of HBV, woodchuck hepatitis virus, and ground squirrel hepatitis virus were predicted by the Garnier algorithm. Amino acid sequences which, in addition to those of the C-terminal regions, may contribute to binding were proposed to be the 21-amino-acid residues located at amino acids 100 to 120 of the nucleocapsid proteins of these hepadnaviruses.  相似文献   

20.
乙型肝炎病毒(HBV)前S基因及其产物的发现有助于认识HBV复制规律。一些研究提示:前S_1蛋白是完整病毒颗粒表面的必要成分,其存在与HBV复制密切相关,前S_1检测能敏感和特异地反映HBV复制状态。另一些研究则认为:前S_2蛋白含有人多聚白蛋白的结合位点,并提出前S_2蛋白为HBV复制的新标志。为探讨HBV复制与两种前S蛋白之间的联系,本研究应用原位分子杂交分析一组慢性肝炎患者肝细胞内HBV DNA,同时检测肝细胞内HBsAg、HBcAg与两种前S蛋白,综合分析两种前S蛋白在HBV复制中的地位和作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号