首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anabolic effect of exercise on muscles and bones is well documented. In teleost fish, exercise has been shown to accelerate skeletogenesis, to increase bone volume, and to change the shape of vertebral bodies. Still, increased swimming has also been reported to induce malformations of the teleost vertebral column, particularly lordosis. This study examines whether zebrafish (Danio rerio) develops lordosis as a result of continuous physical exercise. Zebrafish were subjected, for 1 week, to an increased swimming exercise of 5.0, 6.5 or 8.0 total body lengths (TL) per second. Control and exercise group zebrafish were examined for the presence of vertebral abnormalities, by in vivo examination, whole mount staining for bone and cartilage and histology and micro-computed tomography (CT) scanning. Exercise zebrafish developed a significantly higher rate of lordosis in the haemal part of the vertebral column. At the end of the experiment, the frequency of lordosis in the control groups was 0.5 ± 1.3% and that in the exercise groups was 7.5 ± 10.6%, 47.5 ± 10.6% and 92.5 ± 6.0% of 5.0, 6.5 and 8.0 TL∙s−1, respectively. Histological analysis and CT scanning revealed abnormal vertebrae with dorsal folding of the vertebral body end plates. Possible mechanisms that trigger lordotic spine malformations are discussed. This is the first study to report a quick, reliable and welfare-compatible method of inducing skeletal abnormalities in a vertebrate model during the post-embryonic period.  相似文献   

2.
Sonomicrometrics of in vivo axial strain of muscle has shown that the swimming fish body bends like a homogenous, continuous beam in all species except tuna. This simple beam-like behavior is surprising because the underlying tendon structure, muscle structure and behavior are complex. Given this incongruence, our goal was to understand the mechanical role of various myoseptal tendons. We modeled a pumpkinseed sunfish, Lepomis gibbosus, using experimentally-derived physical and mechanical attributes, swimming from rest with steady muscle activity. Axially oriented muscle-tendons, transverse and axial myoseptal tendons, as suggested by current morphological knowledge, interacted to replicate the force and moment distribution. Dynamic stiffness and damping associated with muscle activation, realistic muscle force generation, and force distribution following tendon geometry were incorporated. The vertebral column consisted of 11 rigid vertebrae connected by joints that restricted bending to the lateral plane and endowed the body with its passive viscoelasticity. In reaction to the acceleration of the body in an inviscid fluid and its internal transmission of moment via the vertebral column, the model predicted the kinematic response. Varying only tendon geometry and stiffness, four different simulations were run. Simulations with only intrasegmental tendons produced unstable axial and lateral tail forces and body motions. Only the simulation that included both intra- and intersegmental tendons, muscle-enhanced segment stiffness, and a stiffened caudal joint produced stable and large lateral and axial forces at the tail. Thus this model predicts that axial tendons function within a myomere to (1) convert axial force to moment (moment transduction), (2) transmit axial forces between adjacent myosepta (segment coupling), and, intersegmentally, to (3) distribute axial forces (force entrainment), and (4) stiffen joints in bending (flexural stiffening). The fact that all four functions are needed to produce the most realistic swimming motions suggests that axial tendons are essential to the simple beam-like behavior of fish.  相似文献   

3.
Most anuran larvae show large lateral oscillations at both the tip of the tail and the snout while swimming in a straight line. Although the lateral deflections at the snout have long been considered an inefficient aspect of tadpole locomotion, a recent hydrodynamic model suggests that they may in fact help generate thrust. It is not clear though exactly where this bending takes place. The vertebral column is extremely short and seemingly inflexible in anurans, and any axial flexion that might occur there is hidden within the globose body of the tadpole. Here we test the hypothesis that lateral deflections of the snout correlate with bending of the vertebral column within the torso of tadpoles. To quantify vertebral curvature, three sonomicrometry crystals were surgically implanted along the dorsal midline in locations corresponding to the anterior, middle, and posterior region of the presacral vertebral column. Swimming trials were conducted in a flume where synchronized video recordings were collected in dorsal view. Our results confirm that cyclic lateral bending occurs along the vertebral column during swimming and indicate that vertebral curvature is temporally in phase with lateral oscillation of the snout. Lateral oscillation of the snout increased significantly with increasing vertebral curvature. Similarly, tail beat amplitude also increases significantly with increasing vertebral curvature. Our results suggest that cyclic lateral flexion of the vertebral column, activated by the axial muscle within the torso of tadpoles contributes to snout oscillations and the generation of thrust during undulatory swimming in anuran larvae.  相似文献   

4.
Our goal is to describe a specific case of a general process gaining traction amongst biologists: testing biological hypotheses with biomimetic structures that operate in bioinspired robots. As an example, we present MARMT (mobile autonomous robot for mechanical testing), a surface-swimmer that undulates a submerged biomimetic tail to power cruising and accelerations. Our goal was to test the hypothesis that stiffness of the body controls swimming behavior and that both stiffness and behavior can be altered by changes in the morphology of the vertebral column. To test this hypothesis, we built biomimetic vertebral columns (BVC) outfitted with variable numbers of rigid ring centra; as the number of centra increased the axial length of the intervertebral joints decreased. Each kind of BVC was tested in dynamic bending to measure the structure's apparent stiffness as the storage and loss moduli. In addition, each kind of BVC was used as the axial skeleton in a tail that propelled MARMT. We varied MARMT's tail-beat frequency, lateral amplitude of the tail, and swimming behavior. MARMT's locomotor performance was measured using an on-board accelerometer and external video. As the number of vertebrae in the BVC of fixed length increased, so, too, did the BVC's storage modulus, the BVC's loss modulus, MARMT's mean speed during cruising, and MARMT's peak acceleration during a startle response. These results support the hypothesis that stiffness of the body controls swimming behavior and that both stiffness and behavior can be altered by changes in the morphology of the vertebral column.  相似文献   

5.
In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion.  相似文献   

6.
Despite the great interest of red porgy as a new species for Mediterranean aquaculture, its commercial production is constrained by the high incidence of skeletal deformities occurring in this species under culture conditions. Several studies have been conducted to better understand the origin of these anomalies in this species, using different system intensiveness, rotifers enrichment products or rotifers docosahexaenoic acid content. The first study showed that culture intensification increased the number of fish with an extra vertebrae, what was probably related to the different nutritional quality of live preys employed in each treatment, since water temperature, salinity and genetic background were identical for the different batches of fish studied. Total incidence of skeletal abnormalities was higher in the intensive system, particularly cranial abnormalities and kyphosis in the cephalic vertebrae. In both rearing systems the most common skeletal anomalies were vertebral column disorders, lordosis and fused vertebrae, their localization along the column being affected by the culture intensiveness. Rotifer enrichment, predominantly its docosahexaenoic acid content significantly affected deformities occurrence. A marked positive effect of rotifer docosahexaenoic acid content was found on larval survival. X‐ray studies denoted elevated levels of bone abnormalities associated, in both trials, to low docosahexaenoic acid content in live preys. Among different anomalies, the presence of fused vertebrae was the most frequent deformity for both rearing trials. A 50% reduction in the number of deformed fish for each type of deformity was obtained when the larvae were fed higher docosahexaenoic acid levels, denoting the important role of this fatty acid in bone development. Further studies are needed to elucidate the importance of essential fatty acids on the development of bone deformities in fish, since the functions of these fatty acids differ among them and can lead to very different effects in fish metabolism, including bone formation.  相似文献   

7.
The comparison of certain proportions of lumbar vertebral bodies and of the lumbar column as a whole between a range of primate and non-primate mammals suggests that the relatively high robusticity of the lumbar column in primates may be related to habitual trunkal erectness. A decrease in the total number of lumbar vertebrae and high robusticity of individual vertebrae may be associated with large body size and positional habits in which trunkal erectness is particularly important. In some groups of primates proportions may relate to particular back movements occurring during quadrupedal progression or to positional suspension. Allometric regressions suggest that resistance to bending may be as important a function of lumbar vertebral bodies as resistance to compression. The proportions of the immediately pre-sacral lumbar vertebral bodies help to produce the normal human lumbar lordosis, but other factors must also be involved in the formation of the lordosis.  相似文献   

8.
Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size‐matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r2 values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non‐vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The micro‐anatomical changes associated with lordotic and kyphotic vertebral curvatures (VC) in juvenile and adult Senegalese sole Solea senegalensis are described. In addition, it is demonstrated that the tissue and cellular structures of individual vertebrae can be severely affected. Two main conformations were found in deformed juvenile specimens: flattened vertebrae with dorso‐ventral compression and trapezoidal vertebrae forming concave and convex sides under compressive and tensile stresses. Histological analyses revealed the occurrence of an ectopic cartilaginous tissue within the acellular bone, both in juveniles and adults, possibly to cope with altered mechanical stress in deformed vertebrae. The results suggest that the alteration in loading to which curved vertebral columns are subjected might trigger vertebral reshaping and differentiation of cells towards this ectopic tissue. In addition, mesenchymal cells appear to play an important role in its formation. It is here proposed that the acellular bone of S. senegalensis is capable of adaptively responding to altered loading regimes at the structural level by reshaping vertebrae and at the micro‐anatomical level by recruiting chondrocyte‐like cells to areas of altered mechanical stress.  相似文献   

10.
We measured sexual behavior (lordosis) in ovariectomized, steroid-treated, exercising female rats. When estradiol-treated animals exercised voluntarily, lordosis was directly related to the amount of exercise. Forced exercise (swimming) following treatment with estradiol 17 beta and progesterone significantly increased lordosis scores but only after animals swam for 2.5 hr per day. Lordosis behavior returned to baseline levels 7 weeks after forced exercise was stopped. Circulating levels of estrogen and progesterone measured immediately after behavioral testing did not differ between animals forced to exercise and their controls. The mechanisms responsible for the increase in lordosis behavior following exercise are unclear. It is possible that a change in body composition, a change in neural sensitivity to gonadal steroids, and/or changes in pituitary or adrenal function contribute to the increased lordosis behavior in exercised animals.  相似文献   

11.
In estrogen-treated, ovariectomized rats, selective transections were used to interrupt, together or separately, the medial and lateral pathways by which efferent fibers from the ventromedial nucleus (VMN) of the hypothalamus reach the lower brain stem. Dorsal hemisections placed to interrupt both projections reduced or eliminated lordotic behavior. Transections placed to intercept all of the medially descending fibers, but spare the lateral pathway, did not reduce lordosis in mating or manual stimulation tests. The lateral pathway was interrupted at two different locations. Parasagittal transections at the level of the VMN showed that the lateral pathway, as a whole, was not required for lordosis when the medial pathway was left intact. Also, no particular subset of fibers assuming a lateral trajectory from the VMN to the brain stem was required for the display of lordosis. However, the fibers running through the lateral brain stem do play some role in the expression of the reflex, and more caudal bilateral lateral transections did reduce lordotic behavior. The absence of lordosis in mating tests was not a result of a systematic increase in rejecting behaviors. The observation of intermittent lordotic responses, or improved lordotic behavior following additional treatment with estrogen and/or progesterone revealed that these laterally transected animals were still able to produce the motor pattern of lordosis. The deficits seen were attributed to the interruption of fibers mediating the control of lordosis by the hypothalamus. This role of the ventromedial nucleus can be described as a tonic, estrogen-dependent facilitation of supraspinal mechanisms which control lordosis and are located more caudally in the brain stem. The laterally descending VMN efferents may play a quantitatively more important role in the control of lordosis than the medially descending fibers.  相似文献   

12.
Two series of osteoderms associated with the anterior three-quarters of the presacral vertebral column of the Early Permian temnospondylous amphibian Cacops aspidephorus have important implications for biomechanics of the axial skeleton. An internal series consists of an osteoderm fused to the distal tip of each neural spine. Lying dorsal to the internal series and overlapping each internal osteoderm is a second external series. The orientation of the zygapophyseal facets implies modest lateral flexion with limited coupled axial rotation of the column. However, the osteoderms restricted any possible lateral flexion through their inverted V-shape, strongly angled overlap between each external osteoderm and its neighbouring internal osteoderms, and the presence of a midsagittal flange on the ventral surface of each external osteoderm that fits into grooves on the anterior and posterior edges of the neighbouring internal osteoderms. This configuration allowed vertical flexion of the vertebral column with little lateral flexion. The rod-like nature of osteoderms with the anterior three-quarters of the presacral vertebrae suggests a restricted form of forward movement for Cacops unlike that of other early tetrapods.  相似文献   

13.
The vertebral column plays a key role in maintaining posture, locomotion, and transmitting loads between body components. Cervical vertebrae act as a bridge between the torso and head and play a crucial role in the maintenance of head position and the visual field. Despite its importance in positional behaviors, the functional morphology of the cervical region remains poorly understood, particularly in comparison to the thoracic and lumbar sections of the spinal column. This study tests whether morphological variation in the primate cervical vertebrae correlates with differences in postural behavior. Phylogenetic generalized least-squares analyses were performed on a taxonomically broad sample of 26 extant primate taxa to test the link between vertebral morphology and posture. Kinematic data on primate head and neck postures were used instead of behavioral categories in an effort to provide a more direct analysis of our functional hypothesis. Results provide evidence for a function-form link between cervical vertebral shape and postural behaviors. Specifically, taxa with more pronograde heads and necks and less kyphotic orbits exhibit cervical vertebrae with longer spinous processes, indicating increased mechanical advantage for deep nuchal musculature, and craniocaudally longer vertebral bodies and more coronally oriented zygapophyseal articular facets, suggesting an emphasis on curve formation and maintenance within the cervical lordosis, coupled with a greater resistance to translation and ventral displacement. These results not only document support for functional relationships in cervical vertebrae features across a wide range of primate taxa, but highlight the utility of quantitative behavioral data in functional investigations. Am J Phys Anthropol 156:531–542, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
The segmental heritage of all vertebrates is evident in the character of the vertebral column. And yet, the extent to which direct translation of pattern from the somitic mesoderm and de novo cell and tissue interactions pattern the vertebral column remains a fundamental, unresolved issue. The elements of vertebral column pattern under debate include both segmental pattern and anteroposterior regional specificity. Understanding how vertebral segmentation and anteroposterior positional identity are patterned requires understanding vertebral column cellular and developmental biology. In this study, we characterized alignment of somites and vertebrae, distribution of individual sclerotome progeny along the anteroposterior axis and development of the axial skeleton in zebrafish. Our clonal analysis of zebrafish sclerotome shows that anterior and posterior somite domains are not lineage-restricted compartments with respect to distribution along the anteroposterior axis but support a 'leaky' resegmentation in development from somite to vertebral column. Alignment of somites with vertebrae suggests that the first two somites do not contribute to the vertebral column. Characterization of vertebral column development allowed examination of the relationship between vertebral formula and expression patterns of zebrafish Hox genes. Our results support co-localization of the anterior expression boundaries of zebrafish hoxc6 homologs with a cervical/thoracic transition and also suggest Hox-independent patterning of regionally specific posterior vertebrae.  相似文献   

16.
The pre-sacral vertebrae of most sauropod dinosaurs were surrounded by interconnected, air-filled diverticula, penetrating into the bones and creating an intricate internal cavity system within the vertebrae. Computational finite-element models of two sauropod cervical vertebrae now demonstrate the mechanical reason for vertebral pneumaticity. The analyses show that the structure of the cervical vertebrae leads to an even distribution of all occurring stress fields along the vertebrae, concentrated mainly on their external surface and the vertebral laminae. The regions between vertebral laminae and the interior part of the vertebral body including thin bony struts and septa are mostly unloaded and pneumatic structures are positioned in these regions of minimal stress. The morphology of sauropod cervical vertebrae was influenced by strongly segmented axial neck muscles, which require only small attachment areas on each vertebra, and pneumatic epithelia that are able to resorb bone that is not mechanically loaded. The interaction of these soft tissues with the bony tissue of the vertebrae produced lightweight, air-filled vertebrae in which most stresses were borne by the external cortical bone. Cervical pneumaticity was therefore an important prerequisite for neck enlargement in sauropods. Thus, we expect that vertebral pneumaticity in other parts of the body to have a similar role in enabling gigantism.  相似文献   

17.
The postcranial system is composed of the axial and appendicular skeletons. The axial skeleton, which consists of serially repeating segments commonly known as vertebrae, protects and provides leverage for movement of the body. Across the vertebral column, much numerical and morphological diversity can be observed, which is associated with axial regionalization. The present article discusses this basic diversity and the early developmental mechanisms that guide vertebral formation and regionalization. An examination of vertebral numbers across the major vertebrate clades finds that actinopterygian and chondrichthyan fishes tend to increase vertebral number in the caudal region whereas Sarcopterygii increase the number of vertebrae in the precaudal region, although exceptions to each trend exist. Given the different regions of axial morphospace that are occupied by these groups, differential developmental processes control the axial patterning of actinopterygian and sarcopterygian species. It is possible that, among a variety of factors, the differential selective regimes for aquatic versus terrestrial locomotion have led to the differential use of axial morphospace in vertebrates.  相似文献   

18.
Mice deficient in growth differentiation factor 11 (GDF11) signaling display anterior transformation of axial vertebrae and truncation of caudal vertebrae. However, the in vivo molecular mechanisms by which GDF11 signaling regulates the development of the vertebral column have yet to be determined. We found that Gdf11 and Acvr2b mutants are sensitive to exogenous RA treatment on vertebral specification and caudal vertebral development. We show that diminished expression of Cyp26a1, a retinoic acid inactivating enzyme, and concomitant elevation of retinoic acid activity in the caudal region of Gdf11−/− embryos may account for this phenomenon. Reduced expression or function of Cyp26a1 enhanced anterior transformation of axial vertebrae in wild-type and Acvr2b mutants. Furthermore, a pan retinoic acid receptor antagonist (AGN193109) could lessen the anterior transformation phenotype and rescue the tail truncation phenotype of Gdf11−/− mice. Taken together, these results suggest that GDF11 signaling regulates development of caudal vertebrae and is involved in specification of axial vertebrae in part by maintaining Cyp26a1 expression, which represses retinoic acid activity in the caudal region of embryos during the somitogenesis stage.  相似文献   

19.
The aim of this study was to develop a biomechanical experimental set-up to quantify motion of ventrally inserted spinal implants at the implant/bone interface. The model we used was the vertebral column of the calf. Lumbar vertebrae L2 to L4 were "instrumented" with a screw-rod system. The adjacent vertebrae L1 and L5 were connected to a servohydraulic testing machine and axial compression applied. Shortening of the specimen and three-dimensional movement of the most cranial implant relative to the bone was recorded using 3 electromagnetic transducers. 100,000 cycles of axial loading varying between -0.5 kN and -1 kN were applied. Static shortening of the specimen of 8.5 mm and an elastic movement of 180 to 280 microns were measured. The greatest amplitude of single-plane motion was recorded in the sagittal plane in both static and elastic modes. Implant motion within each cycle was recorded accurately as load-displacement curves within a range of 1.35 to 30 microns. With this test set-up, primary stability of different spinal implant systems can be compared. The use of electromagnetic transducers permits three-dimensional implant motion analysis even when only a mono-axial servohydraulic testing machine is available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号