首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jenkins CL 《Plant physiology》1989,89(4):1231-1237
The effect of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)-propenoate (DCDP), an analog of phosphoenolpyruvate (PEP), on PEP carboxylase activity in crude leaf extracts and on photosynthesis of excised leaves was examined. DCDP is an effective inhibitor of PEP carboxylase from Zea mays or Panicum miliaceum; 50% inhibition was obtained at 70 or 350 micromolar, respectively, in the presence of 1 millimolar PEP and 1 millimolar HCO3. When fed to leaf sections via the transpiration stream, DCDP at 1 millimolar strongly inhibited photosynthesis in C4 species (79-98% inhibition for a range of seven C4 species), but only moderately in C3 species (12-46% for four C3 species), suggesting different mechanisms of inhibition for each photosynthetic type. The response of P. miliaceum (C4) net photosynthesis to intercellular pCO2 showed that carboxylation efficiency, as well as the CO2 saturated rate, are lowered in the presence of DCDP and supported the view that carboxylation efficiency in C4 species is directly related to PEP carboxylase activity. A fivefold increase in intercellular pCO2 over that occurring in P. miliaceum under normal photosynthesis conditions only increased net photosynthesis rate in the presence of 1 millimolar DCDP from zero to about 5% of the maximal uninhibited rate. Therefore, it seems unlikely that direct fixation of atmospheric CO2 by the bundle sheath cells makes any significant contribution to photosynthetic CO2 assimilation in C4 species. The results support the concept that C4-selective herbicides may be developed based on inhibitors of C4 pathway reactions.  相似文献   

2.
Populus euramericana cv. I-214 andHelianthus annuus L. cv. Russian Mammoth were exposed to various concentrations of O3 SO2 or NO2 for 2 h in a cylindrical assimilation chamber. The threshold concentrations of air pollutants for inhibition of net photosynthesis differed between the two species and also between the pollutants tested. Furthermore, the lethal concentrations where the net photosynthetic rates were completely inhibited, also differed between species and between pollutants. For SO2 and NO2,P. euramericana was more tolerant photosynthetically thanH. annuus when related to the concentration of pollutants used during the experiment. However, when related to the cumulative uptake rate of each pollutant, the photosynthetic tolerance of the two species was similar. In contrast to the effects of SO2 or NO2, the influence of O3 on net photosynthesis was quite different. The relative rates of net photosynthesis in both species showed the same linear relationship with O3 concentration. However, the relationship between the relative rate of net photosynthesis and the cumulative uptake rate of O3 differed between the two species, although it was linear in both cases.  相似文献   

3.
Detached corn and sunflower leaves supplied with PbCl2 via the transpiration stream exhibited reduced rates of photosynthesis. The difference between species in the amount of Pb taken up was in direct proportion to their respective transpiration rates. For both species the reduction in photosynthesis and the amount of Pb taken up increased with increasing treatment concentrations. A corresponding reduction occurred in the rate of transpiration suggesting that stomatal resistance may be increased by Pb contamination. The pathways of CO2 and water vapor exchange are discussed in relation to the effects of Pb on photosynthesis and transpiration.  相似文献   

4.
Brown RH  Byrd GT  Black CC 《Plant physiology》1992,100(2):947-950
Hybrids have been made between species of Flaveria exhibiting varying levels of C4 photosynthesis. The degree of C4 photosynthesis expressed in four interspecific hybrids (Flaveria trinervia [C4] × F. linearis [C3-C4], F. brownii [C4-like] × F. linearis, and two three-species hybrids from F. trinervia × [F. brownii × F. linearis]) was estimated by inhibiting phosphoenolpyruvate carboxylase in vivo with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP). The inhibitor was fed to detached leaves at a concentration of 4 mm, and apparent photosynthesis was measured at atmospheric levels of CO2 and at 20 and 210 mL L−1 of O2. Photosynthesis at 210 mL L−1 of O2 was inhibited 32% by DCDP in F. linearis, by 60% in F. brownii, and by 87% in F. trinervia. Inhibition in the hybrids ranged from 38 to 52%. The inhibition of photosynthesis by 210 mL L−1 of O2 was increased when DCDP was used, except in the C4 species, F. trinervia, in which photosynthesis was insensitive to O2. Except for F. trinervia, control plants with less O2 sensitivity (more C4-like) exhibited a progressively greater change in O2 inhibition of photosynthesis when treated with DCDP. This increased O2 inhibition probably resulted from decreased CO2 concentrations in bundle sheath cells due to inhibition of phosphoenolpyruvate carboxylase. The inhibition of photosynthesis by DCDP is concluded to underestimate the degree of C4 photosynthesis in the interspecific hybrids because increased direct assimilation of atmospheric CO2 by ribulose bisphosphate carboxylase may compensate for inhibition of phosphoenolpyruvate carboxylase.  相似文献   

5.
The dose- and time-response effects of single 4-h day-exposures to 0.50, 0.79, 1.28, 1.58, 2.38 or 3.35 μl l?1 (ppm) SO2 followed by single 3-h night-exposures of 0.60, 0.87, 1.54, 1.91, 2.91 or 3.98 μl l?1 SO2 on photosynthesis, transpiration and dark respiration were examined for nine East European (Carpatho-Ukrainian, ‘Rachovo’) half-sib families and for two populations, one from the FRG (‘Westerhof’) and one from the GDR (‘Schmiedefeld’) of Norway spruce [Picea abies (L.) Karst.], all in their 4th growing season. Even the lowest SO2 concentration reduced photosynthesis and transpiration within 1 h. Photosynthesis of the different spruce types was affected significantly differently, the most sensitive spruce being suppressed 2.5 times more than the most tolerant spruce. ‘Westerhof’ was more resistant to SO2 than the average ‘Rachovo’ half-sibs. Neither transpiration (stomatal reaction), which was affected alike by all SO2 concentrations, nor SO2 uptake, explained adequately the effects on photosynthesis. Night transpiration, but not dark respiratin, was stimulated by night SO2 preceded by day SO2 exposure. The gradient of different SO2 sensitivities among young trees from the half-sib families demonstrated a significant negative correlation with the gradient of different sensitivities to novel decline symptoms of their parents growing in a rural seed orchard in Denmark, and with the gradients of four morphology parameters, (height, branching, branch density and the number of Lammas shoots) of the young trees, which in turn demonstrated a positive correlation with decline sensitivity in the seed orchard. The relative photosynthesis sensitivity and the morphology of half-sibs may serve as diagnostic parameters for laboratory selection of the most resistent trees to novel spruce decline in the field. There was a positive correlation between SO2 induced scorching of Lammas shoots and the inhibition of photosynthesis, but not between the severity of SO2 scorching and symptoms of novel spruce decline. The two visible types of symptoms looked very different.  相似文献   

6.
P. Apel 《Biologia Plantarum》1994,36(2):243-246
The water use efficiency (WUE) of the C3?C4 intermediate speciesFlaveria anomala andF. pubescens was similar to that found inF. cronquistii (C3). Compared to this values, the value inF. brownii (C4-like) was significantly increased and was doubled inF. trinervia (C4).Moricandia arvensis, a species with an enhanced CO2 reassimilation potential has a very similar water use efficiency asM. moricandioides (C3 but a lower transpiration rate.  相似文献   

7.
Summary A unique gas exchange system is described in which photosynthesis, transpiration, and stomatal conductance can be measured on leaves during SO2 fumigations. SO2 concentrations can be continuously monitored and manipulated between 0 and 2.0 ppm. Rates of total SO2 uptake and SO2 absorption through stomates of a fumigated leaf can also be determined.Using this system we compared the effects of SO2 on the gas exchange rates of two shrub species that co-occur in the Califormian chaparral. Diplacus aurantiacus, a deciduous shrub, was more sensitive to SO2 fumigation than Heteromeles arbutifolia, an evergreen shrub. The differences in photosynthetic sensitivity could be attributed, in large part, to differential SO2 absorption rates.  相似文献   

8.
Variations in leaf gas-exchange characteristics, leaf pigment content, and other important leaf traits were investigated in seven wild Oryza species, five hybrids, and five improved varieties. The significant variations were observed in photosynthetic pigment contents amongst different species of Oryza. The mean chlorophyll (Chl) content was higher in O. sativa (varieties and hybrids), while O. eichengeri showed the lowest Chl content. The mean carotenoid (Car) content in O. sativa (varieties and hybrids) was higher than in other wild rice species. O. eichengeri and O. barthii had significantly lower Car contents than other rice species. Significant differences were noticed in the rate of photosynthesis (P N), stomatal conductance (g s), transpiration rate (E), internal CO2 concentration (C i), specific leaf mass (SLM), and leaf thickness amongst different Oryza species. The mean P N was the highest in O. nivara followed by O. eichengeri. The mean P N was the lowest in O. glumaepatula, which was lower than that of cultivated varieties and hybrids of O. sativa. High rates of photosynthesis were observed in O. nivara (ACC. No. CR 100097), O. rufipogon (ACC.No. CR 100267), and O. nivara (ACC.No. CR 100008). The O. nivara and O. rufipogon genotypes with high P N might be used in rice improvement programmes for an increase of leaf photosynthesis in rice. Multiple correlations performed between different gas-exchange characteristics and other physiological traits revealed that the rate of photosynthesis was not dependent on the leaf pigment content or the leaf thickness. A strong positive correlation between P N and the P N/Ci ratio, which represents the carboxylation efficiency, indicated that the observed variation in P N was not based on pigment content or other leaf traits.  相似文献   

9.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

10.
The response of apparent photosynthesis to N nutrition was studied in the C3 grass, tall fescue (Festuca arundinacea Schreb.), in the C4 species Panicum maximum Jacq., and in Panicum milioides Nees ex Trin., a species with characteristics intermediate between C3 and C4 photosynthetic types. Plants were grown in culture solution containing 1, 5, 50, and 200 milligrams N per liter. Apparent photosynthesis was measured on the youngest fully expanded leaves at 320 microliters of CO2 per liter of air and 21% O2. Leaf conductance was calculated from transpiration measurements, and CO2 compensation concentrations were also estimated. Several leaf anatomical characteristics were studied on plastic-embedded material. Leaf N content was determined on leaves which were used in photosynthesis measurements.  相似文献   

11.
Ku SB  Edwards GE 《Plant physiology》1977,59(5):986-990
The magnitude of the percentage inhibition of photosynthesis by atmospheric levels of O2 in the C3 species Solanum tuberosum L., Medicago sativa L., Phaseolus vulgaris L., Glycine max L., and Triticum aestivum L. increases in a similar manner with an increase in the apparent solubility ratio of O2/CO2 in the leaf over a range of solubility ratios from 25 to 45. The solubility ratio is based on calculated levels of O2 and CO2 in the intercellular spaces of leaves as derived from whole leaf measurements of photosynthesis and transpiration. The solubility ratio of O2/CO2 can be increased by increased leaf temperature under constant atmospheric levels of O2 and CO2 (since O2 is relatively more soluble than CO2 with increasing temperature); by increasing the relative levels of O2/CO2 in the atmosphere at a given leaf temperature, or by increased stomatal resistance. If the solubility ratio of O2/CO2 is kept constant, as leaf temperature is increased, by varying the levels of O2 or CO2 in the atmosphere, then the percentage inhibition of photosynthesis by O2 is similar. The decreased solubility of CO2 relative to O2 (decreased CO2/O2 ratio) may be partly responsible for the increased percentage inhibition of photosynthesis by O2 under atmospheric conditions with increasing temperature.  相似文献   

12.
In 7 species (Eleocharis palustris R. Br.,Juncus bufonius L.,Gypsophila muralis L.,Trifolium repens L.,Agrostis stolonifera L.,Potentilla anserina L. andAchillea millefolium L.) growing in a gradient of habitats from aquatic to terrestrial, on a sandy fishpond shore in Southern Bohemia, Czechoslovakia, the daily course of transpiration rate and water content was assessed gravimetrically in their cut-off transpiring parts on two typical summer days. Transpiration rate was largely controlled by microclimate but depressions occurred inJuncus and in some species growing in the drier habitats. The highest instantaneous transpiration rate and total daily transpiration per unit dry weight, about 100 mg g?1 min?1 and 50 g g?1 d?1, respectively, were recorded inAchillea andTrifolium. The water turnover rate ranged from 16.1 g g?1 (H2O) d?1 inJuncus to 10.7 inGypsophila. The estimated daily maximum water saturation deficit was highest inEleocharis (45.7%) and lowest inAchillea (15.0%). The adaptational significance of the observed phenomena is discussed.  相似文献   

13.
揭示作物光合作用、蒸腾作用和水分利用效率(WUE)对大气CO2浓度变化的响应, 对预测未来大气CO2浓度升高条件下作物生产力与需水规律的变化具有重要意义。在自然CO2浓度、CO2倍增和倍增后恢复到自然CO2浓度3种情况下, 对大豆(Glycine max)、甘薯(Ipomoea batatas)、花生(Arachis hypogaea)、水稻(Oryza sativa)、棉花(Gossypium hirsutum)、玉米(Zea mays)、高粱(Sorghum vulgare)和谷子(Setaria italica) 8种作物的气体交换参数进行了研究。结果表明: CO2浓度倍增可以提高光合速率, 降低蒸腾速率, 从而提高WUE, 其中光合速率提高的贡献更大; C3比C4作物的光合速率、WUE增幅大, C3作物光合速率提高对WUE的贡献大于C4作物; 通过对比倍增后恢复到自然CO2浓度时气体交换参数随环境条件变化的响应确定了其内在调控机制; 倍增后恢复到自然CO2浓度时作物光合速率低于自然CO2浓度下的光合速率, 而蒸腾速率无明显差异。由此判断: CO2浓度倍增下存在光合下调现象, 这可能是由于Rubisco酶蛋白含量、活化水平和比活性降低等“非气孔因素”造成的, 并非由气孔导度的降低引起的。  相似文献   

14.
Two major indicators were used to access the degree of photorespiration in various photosynthetic types of Flaveria species (C3, C3-C4, C4-like, and C4): the O2 inhibition of photosynthesis measured above the O2 partial pressure which gives a maximum rate, and O2- and light-dependent whole-chain electron flow measured at the CO2 compensation point (). The optimum level of O2 for maximum photosynthetic rates under atmospheric levels of CO2 (34 Pa) was lower in C3 and C3-C4 species (ca. 2 kPa) than in C4-like and C4 species (ca. 9 kPa). Increasing O2 partial pressures from the optimum for photosynthesis up to normal atmospheric levels (ca. 20 kPa) caused an inhibition of photosynthesis which was more severe under lower CO2. This inhibition was calculated as the O2 inhibition index (A, the percentage inhibition of photosynthesis per kPa increase in O2). From measurements of 18 Flaveria species at atmospheric CO2, the A values decreased from C3 (1.9–2.1) to C3-C4 (1.2–1.6), C4-like (0.6–0.8) and C4 species (0.3–0.4), indicating a progressive decrease in apparent photorespiration in this series. With increasing irradiance at under atmospheric levels of O2, and increasing O2 partial pressure at 300 mol quanta·m–2·s–1, there was a similar increase in the rate of O2 evolution associated with whole-chain electron flow (Jo 2, calculated from chlorophyll fluorescence analysis) in the C3 and C3-C4 species compared to a much lower rate in the C4-like and C4 species. The results indicate that there is substantial O2-dependent electron flow in C3 and C3-C4 species, reflecting a high level of photorespiration compared to that in C4-like and C4 species. Consistent with these results, there was a significant decrease in from C3 (6–6.2 Pa) to C3-C4 (1.0–3.0 Pa), to C4-like and C4 species (0.3–0.8 Pa), indicating a progressive decrease in apparent photorespiration. However, C3 and C3-C4 species examined had high intrinsic levels of photorespiration with the latter maintaining low apparent rates of photorespiration and lower values, primarily by refixing photorespired CO2. The C4-like and C4 Flaveria species had low, but measurable, levels of photorespiration via selective localization of ribulose-1,5-bisphosphate carboxylase in bundle sheath cells and operation of a CO2 pump via the C4 pathway.Abbreviations and Symbols A CO2 assimilation rate - CE carboxylation efficiency - Ci intercellular CO2 partial pressure - Ia absorbed PPFD - Jo 2 oxygen evolution from PSII - PPFD photosynthetic photon flux density (mol · m–2· s–1) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - VPD water-vapor pressure difference between the leaf and atmospheric air - CO2 compensation point - CO 2 quantum yield of CO2 assimilation - PSII quantum yield of photosystem II - A O2 inhibition index for photosynthesis (percentage inhibition of photosynthesis per kPa increase in O2) This research was supported by the National Science Foundation Grant IBN 9317756 and Equipment (Grant DMB-8515521 and DOE/USDA/NSF Triagency Plnat Biochemistry Research Training Grant Program.  相似文献   

15.
Photosynthetic and photorespiratory characteristics of flaveria species   总被引:2,自引:2,他引:0  
Ku MS  Wu J  Dai Z  Scott RA  Chu C  Edwards GE 《Plant physiology》1991,96(2):518-528
The genus Flaveria shows evidence of evolution in the mechanism of photosynthesis as its 21 species include C3, C3-C4, C4-like, and C4 plants. In this study, several physiological and biochemical parameters of photosynthesis and photorespiration were measured in 18 Flaveria species representing all the photosynthetic types. The 10 species classified as C3-C4 intermediates showed an inverse continuum in level of photorespiration and development of the C4 syndrome. This ranges from F. sonorensis with relatively high apparent photorespiration and lacking C4 photosynthesis to F. Among the intermediates, the photosynthetic CO2 compensation points at 30°C and 1150 micromoles quanta per square meter per second varied from 9 to 29 microbars. The values for the three C4-like species varied from 3 to 6 microbars, similar to those measured for the C4 species. The activities of the photorespiratory enzymes glycolate oxidase, hydroxypyruvate reductase, and serine hydroxymethyltransferase decreased progressively from C3 to C3-C4 to C4-like and C4 species. On the other hand, most intermediates had higher levels of phosphenolpyruvate carboxylase and NADP-malic enzyme than C3 species, but generally lower activities compared to C4-like and C4 species. The levels of these C4 enzymes are correlated with the degree of C4 photosynthesis, based on the initial products of photosynthesis. Another indication of development of the C4 syndrome in C3-C4 Flaveria species was their intermediate chlorophyll a/b ratios. The chlorophyll a/b ratios of the various Flaveria species are highly correlated with the degree of C4 photosynthesis suggesting that the photochemical machinery is progressively altered during evolution in order to meet the specific energy requirements for operating the C4 pathway. In the progression from C3 to C4 species in Flaveria, the CO2 compensation point decreased more rapidly than did the decrease in O2 inhibition of photosynthesis or the increase in the degree of C4 photosynthesis. These results suggest that the reduction in photorespiration during evolution occurred initially by refixation of photorespired CO2 and prior to substantive reduction in O2 inhibition and development of the C4 syndrome. However, further reduction in O2 inhibition in some intermediates and C4-like species is considered primarily due to the development of the C4 syndrome. Thus, the evolution of C3-C4 intermediate photosynthesis likely occurred in response to environmental conditions which limit the intercellular CO2 concentration first via refixation of photorespired CO2, followed by development of the C4 syndrome.  相似文献   

16.
Photosynthesis and transpiration were simultaneously measured under different light intensity, temperature and humidity conditions inSasa nipponica andArundinaria pygmaea grown in exposed and shaded habitats. Both species showed a saturated light curve for photosynthetic rate. The saturation point was lower in shaded plants. The apparent quantum yields were larger inS. nipponica and in shaded plants, while the maximum photosynthesis was higher inA. pygmaea and exposed plants. The temperature response of photosynthesis showed an optimum curve in both species. The optinum temperatures were 20 C inS. nipponica and 25 C inA. pygmaea. The influence of humidity on photosynthesis was insignificant for both species. The responses of transpiration to light intensity and relative humidity showed a saturated curve and an optimal one, respectively. There was a significant relationship between transpiration and stomatal frequency, both of which were higher inS. nipponica, while water use efficiency was higher inA. pygmaea. These results suggest thatS. nipponica adapts itself better to shaded, low temperature and less water stress habitats as compared withA. pygmaea.  相似文献   

17.
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water‐limited, rain‐fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m?2 s?1 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water‐use efficiencies were higher (2.4–8.1 mmol mol?1) than C3 averages (0.7–6.8 mmol mol?1), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions.  相似文献   

18.
Intact chloroplasts were obtained from mesophyll protoplasts isolated from Mesembryanthemum crystallinum in the C3 or Crassulacean acid metabolism (CAM) photosynthetic mode, and examined for the influence of inorganic phosphate (Pi) on aspects of bicarbonate-dependent O2 evolution and CO2 fixation. While the chloroplasts from both modes responded similarly to varying Pi, some features appear typical of chloroplasts from species capable of CAM, including a relatively high capacity for photosynthesis in the absence of Pi, a short induction period, and resistance to inhibition of photosynthesis by high levels of Pi. In the absence of Pi the chloroplasts retained 75–85% of the 14CO2 fixed and the total export of dihydroxyacetone phosphate was low compared with the rate of photosynthesis. In CAM plants the ability to conduct photosynthesis and retain most of the fixed carbon in the chloroplasts at low external Pi concentrations may enable storage of carbohydrates which are essential for providing a carbon source for the nocturnal synthesis of malic acid. At high external Pi concentrations (e.g. 10 25 mM), the amount of total dihydroxyacetone phosphate exported to the assay medium relative to the rate of photosynthesis was high while the products of 14CO2 fixation were largely retained in the chloroplasts which indicates starch degradation is occurring at high Pi levels. Starch degradation normally occurs in CAM plants in the dark; high levels of Pi may induce starch degradation in the light which has the effect of limiting export of the immediate products of photosynthesis and thus the degree of Pi inhibition of photosynthesis with the isolated chloroplast.  相似文献   

19.
The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 μmol C m−2 s−1, respectively, and 20 to 30 and 15 to 22 μmol C m−2 s−1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated.  相似文献   

20.
Summary This study investigated ways in which genetically determined differences in SO2 susceptibility resulting from ecotypic differentiation inGeranium carolinianum were expressed physiologically. The SO2-resistant and SO2-sensitive ecotypes were exposed to a combination of short- and long-term SO2 exposures to evaluate the responses of photosynthesis, H2S efflux from foliage (sulfur detoxification), photoassimilate retention, leaf-diffusive resistance to CO2, and growth. When exposed to SO2, both ecotypes re-emit sulfur in a volatile, reduced form, presumably as H2S. Because H2S efflux rates at various SO2 concentrations were comparable between ecotypes, genetic differences inG. carolinianum could not be attributed to a re-emission of excess sulfur as H2S. Incipient SO2 effects on photosynthesis were observed as cumulative SO2 flux into the leaf interior excecded 0.40 nmol·m–2 in the resistant ecotype and 0.26 nmol·m–2 in the sensitive ecotype. Although initial SO2-induced changes in photosynthesis in both ecotypes were mediated through an increase in stomatal resistance to CO2, the ecotype-specific patterns as a function of pollutant concentration and exposure time were associated with marked increases in residual resistance to CO2. Patterns in photosynthesis, photoassimilate retention, and growth following long-term SO2 exposures were also ecotype-specific. Although physiological accommodation of SO2 stress was observed in both ecotypes, it was more pronounced in the resistant ecotype. The physiological mechanisms underlying genetic differences inG. carolinianum in response to SO2 stress were concluded to be (1) dissimilar threshold levels of response to SO2 and/or its toxic derivatives and (2) differences in homeostatic processes governing the rate of repair or compensation for physiological injury.Research sponsored by the Office of Health and Environmental Research, U.S. Department of Energy, under contract No. DEAC05-840R21400 with Martin Marietta, Energy Systems, Inc. and the U.S. Environmental Protection AgencyPublication No. 2610, Environmental Sciences Division, Oak Ridge National Laboratory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号