首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Fifty pineapple buds (cv. Red Spanish Pinar, donor) were collected from field-grown plants and cultured in vitro. Forty-three young pineapple shoots were obtained after 42 d of implantation. Shoots were micropropagated for 168 d to produce 24,768 shoots. Three hundred young leaves were randomly selected as explants for callus formation. Calli proliferated for 4 months. Five hundred calli were randomly selected and transferred to the plantlet regeneration medium. Four hundred twenty-seven in vitro-plantlets were obtained and later hardened ex vitro. Then, 387 plantlets were transferred to the field environment and asexually propagated for two generations (30 months). Only two phenotype variants were identified: P3R5 and Dwarf. A more detailed study was carried out to compare these two variants with the donor plant. The variant P3R5 showed differences in the number of slips and suckers, and in the presence of thorns in the leaves and in the fruit crowns. The somaclonal variant Dwarf, was different from the donor plant in regard with the plant height; the peduncle diameter; the number of shoots, slips and suckers; the fruit mass with crown; the number of eyes in the fruit; the fruit height and diameter; the leaf color; the plant architecture; the length of plant generation cycle; and the fruit color and shape. Both somaclonal variants showed different AFLP banding patterns in comparison with the donor cultivar.  相似文献   

2.
Pineapple is one of the most important tropical fruits, but the availability of planting material is insufficient to agricultural demands. Therefore, several pineapple micropropagation protocols have been developed. However, acclimatization of in vitro plants continues to take a prolonged period. Biofertilizers have been found as safe alternatives to improve the agricultural performances of many crops. This study highlights some of the effects of the application of Azotobacter chroococcum (INIFAT5 strain) on in vitro pineapple plants during acclimatization. The bacteria were sprayed immediately after transplanting to the ex vitro environment; the plants were then sprayed every 4 wk. A control group of plants was established. Subsequently, after 5 mo, the evaluated variables included fresh and dry plant weight, plant height (cm), and root length (cm). The anatomy of middle-aged leaves and roots was also studied: transversal thickness and width of cuticle, epidermis, hypodermis, aquiferous parenchyma, and photosynthetic parenchyma. Thickness of root exoderm, external cortex, internal cortex, and stele were also evaluated. In general, the INIFAT5 strain improved the plant development. Results showed that the bacteria significantly provoked changes in the plant fresh weight, the thickness of the leaf abaxial and adaxial cuticles, and the root exoderm width. Contrastingly, A. chroococcum did not affect the thickness of the leaf photosynthetic parenchyma.  相似文献   

3.
The occurrence of somaclonal variation among regenerants derived through indirect shoot organogenesis from leaf explants of three Dieffenbachia cultivars Camouflage, Camille and Star Bright was evaluated. Three types of somaclonal variants (SV1, SV2, and SV3) were identified from regenerated plants of cv. Camouflage, one type from cv. Camille, but none from cv. Star Bright. The three variants had novel and distinct foliar variegation patterns compared to cv. Camouflage parental plants. Additionally, SV1 was taller with a larger canopy and longer leaves than parental plants and SV2. SV2 and SV3 did not produce basal shoots (single stem) but basal shoot numbers between SV1 and parental plants were similar ranging from three to four. The variant type identified from regenerated cv. Camille had lanceolate leaves compared to the oblong leaves of the parent. This variant type also grew taller and had a larger canopy than parental plants. The rates of somaclonal variation were up to 40.4% among regenerated cv. Camouflage plants and 2.6% for regenerated cv. Camille. The duration of callus culture had no effect on somaclonal variation rates of cv. Camouflage as the rates between plants regenerated from 8 months to 16 months of callus culture were similar. The phenotypes of the identified variants were stable as verified by their progenies after cutting propagation. This study demonstrated the potential for new cultivar development by selecting callus-derived somaclonal variants of Dieffenbachia.  相似文献   

4.
比较研究了4种不同水分生态型植物在不同水分胁迫下的光合作用、叶片含水量和气孔阻力等生理指标的反应.结果表明,不同水分生态型植物抵御干旱的机制是不同的.中生植物主要是通过增加气孔阻力限制蒸腾失水,而旱生植物则依靠高浓度的细胞原生质减少水分的散失,后者保水效率远高于前者.植物从中生种到旱生种,生理特性亦显示出规律性的种间差异,叶片含水量和气孔阻力水平降低,而单位叶面积的净光合速率增加.  相似文献   

5.
草原地区不同生态类型的植物生理特性的比较研究   总被引:10,自引:3,他引:7  
比较研究了4种不同水分生态型植物在不同水分胁迫下的光合作用、叶片含水量和气孔阻力等生理指标的反应。结果表明,不同水分生态型植物抵御干旱的机制是不同的。中生植物主要是通过增加气孔阻力限制蒸腾失水,而旱生植物则依靠高浓度的细胞原生质减少水分的散失,后者保水效率远高于前者。植物从中生种到旱生种,生理特性亦显示出规律性的种间差异,叶片含水量和气孔阻力水平降低,而单位叶面积的净光合速率增加。  相似文献   

6.
樟子松幼苗生长及光合特性对强风沙流吹袭的响应   总被引:1,自引:0,他引:1  
为了解樟子松幼苗对不同时间强风沙流吹袭的生理生态响应,2013年春季在内蒙古科尔沁沙地研究了8级大风风沙流(风速18m·s-1,风沙流强度173g·cm-1·min-1)吹袭10、20和30min下樟子松幼苗生长与光合特性的变化。结果显示:(1)随着风吹时间的增加,樟子松的株高生长量减少、茎粗生长加快,落叶数量增加,其中30min处理与CK相比的株高生长量下降52.63%,茎粗生长量增加233.30%,落叶指数增加466.70%。(2)风沙流吹袭没有改变樟子松幼苗的净光合速率、蒸腾速率、气孔导度和胞间CO2浓度的日变化规律,但日光合峰值下降,日最大蒸腾速率增加;与CK相比,30min处理的日最大光合速率下降22.69%,日最大蒸腾速率增加11.89%。(3)随风吹时间增加,其叶片温度、叶片相对含水量、日均光合速率、水分利用效率下降,30min处理较CK依次下降0.60%、4.37%、28.57%和31.58%,且日均蒸腾速率、气孔导度和胞间CO2浓度增加,30min处理较CK依次增加6.25%、6.67%和12.60%。研究表明,在持续风沙流胁迫下,樟子松幼苗光合作用受到抑制,蒸腾耗水增加,水分利用效率降低;樟子松幼苗生长速率降低主要源于光合面积减少和光合作用受到抑制,而其光合速率下降主要因幼苗叶片叶温和叶片含水量下降所致,蒸腾速率的增加主要源于气孔导度的增加;为了适应风沙流持续吹袭的胁迫,樟子松幼苗采取了降低株高生长速率,加快茎粗生长速率的适应策略。  相似文献   

7.
There is presently no consensus about the factor(s) driving photosynthetic acclimation and the intra-canopy distribution of leaf characteristics under natural conditions. The impact was tested of local (i) light quality (red/far red ratio), (ii) leaf irradiance (PPFD(i)), and (iii) transpiration rate (E) on total non-structural carbohydrates per leaf area (TNC(a)), TNC-free leaf mass-to-area ratio (LMA), total leaf nitrogen per leaf area (N(a)), photosynthetic capacity (maximum carboxylation rate and light-saturated electron transport rate), and leaf N partitioning between carboxylation and bioenergetics within the foliage of young walnut trees grown outdoors. Light environment (quantity and quality) was controlled by placing individual branches under neutral or green screens during spring growth, and air vapour pressure deficit (VPD) was prescribed and leaf transpiration and photosynthesis measured at branch level by a branch bag technique. Under similar levels of leaf irradiance, low air vapour pressure deficit decreased transpiration rate but did not influence leaf characteristics. Close linear relationships were detected between leaf irradiance and leaf N(a), LMA or photosynthetic capacity, and low R/FR ratio decreased leaf N(a), LMA and photosynthetic capacity. Irradiance and R/FR also influenced the partitioning of leaf nitrogen into carboxylation and electron light transport. Thus, local light level and quality are the major factors driving photosynthetic acclimation and intra-canopy distribution of leaf characteristics, whereas local transpiration rate is of less importance.  相似文献   

8.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

9.
This study analyzed genetic differences of 19 cultivars selected from somaclonal variants of Syngonium podophyllum Schott along with their parents as well as seven additional Syngonium species and six other aroids using amplified fragment length polymorphism (AFLP) markers generated by 12 primer sets. Among the 19 somaclonal cultivars, ‘Pink Allusion’ was selected from ‘White Butterfly’. Tissue culture of ‘Pink Allusion’ through organogenesis resulted in the development of 13 additional cultivars. Self-pollination of ‘Pink Allusion’ obtained a cultivar, ‘Regina Red Allusion’, and tissue culture propagation of ‘Regina Red Allusion’ led to the release of five other cultivars. The 12 primer sets generated a total of 1,583 scorable fragments from all accessions, of which 1,284 were polymorphic (81.9%). The percentages of polymorphic fragments within ‘White Butterfly’ and ‘Regina Red Allusion’ groups, however, were only 1.2% and 0.4%, respectively. Jaccard's similarity coefficients among somaclonal cultivars derived from ‘White Butterfly’ and ‘Regina Red Allusion’, on average, were 0.98 and 0.99, respectively. Seven out of the 15 cultivars from the ‘White Butterfly’ group and three out of six from the ‘Regina Red Allusion’ group were clearly distinguished by AFLP analysis as unique fragments were associated with respective cultivars. The unsuccessful attempt to distinguish the remaining eight cultivars from the ‘White Butterfly’ group and three from the ‘Regina Red Allusion’ group was not attributed to experimental errors or the number of primer sets used; rather it is hypothesized to be caused by DNA methylation and/or some rare mutations. This study also calls for increased genetic diversity of cultivated Syngonium as they are largely derived from somaclonal variants.  相似文献   

10.
为了探究喀斯特石漠化地区植物叶片功能性状及影响因素,以及揭示其对石漠化环境的适应机理,该文以中国南方喀斯特高原峡谷地区的泡核桃(Juglans sigillata)为对象,揭示土壤养分对叶片结构和光合性状的影响效应。结果表明:(1)泡核桃叶功能性状随石漠化等级增加,叶面积减小,比叶面积增大,叶干物质含量和叶组织密度先降后升,蒸腾速率、胞间CO2浓度、气孔导度和光能利用率先下降后升高,其他性状变化趋势不显著。(2)冗余分析表明土壤养分能够解释37.4%的光合性状变异与53.4%的结构性状变异,其中全磷和溶解性有机碳对光合性状影响最大,而对结构性状影响最显著的是碱解氮和速效磷。(3)比叶面积分别与叶干物质含量极显著负相关,与净光合速率极显著正相关,叶厚度与叶组织密度极显著负相关,蒸腾速率与胞间CO2浓度、气孔导度极显著正相关,水分利用速率与蒸腾速率、胞间CO2浓度、气孔导度极显著负相关,光能利用率与净光合速率显著正相关。研究结果表明,泡核桃为适应喀斯特石漠化的特殊生境采取增强生长功能性状,同时提高资源获取能力的开拓型生长策略...  相似文献   

11.
Growth and photosynthetic responses of wheat plants grown in space.   总被引:3,自引:0,他引:3       下载免费PDF全文
Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.  相似文献   

12.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

13.
为选择喀斯特特有树种蚬木(Excentrodendron hsienmu)优良种源,采用完全随机区组试验设计,研究了不同种源蚬木光合生理和生长特征的月动态变化。结果表明,蚬木光合生理特性在不同月份、不同种源间差异显著,净光合速率、气孔导度、蒸腾速率和水分利用效率表现出对气候变化的适应,均随月份发生变化。各种源蚬木净光合速率、气孔导度和蒸腾速率均在8月份最高,4月份和12月份较低。水分利用效率则在8月份最低,4月份和12月份较高。相关分析表明,蚬木各种源苗高与地径、净光合速率均显著正相关,而净光合速率与地径也表现一定的正相关关系,说明净光合速率可作为蚬木生长过程中的指示性监测指标。蚬木大新、武鸣、隆安种源在整个生长季节均表现较高的净光合速率和生长量,以及较低的蒸腾速率,因此,这3个蚬木种源更适合在南宁地区引种种植。  相似文献   

14.
15.
The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying.As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.  相似文献   

16.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

17.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

18.
研究了不同施氮量对冬小麦分蘖到抽穗期叶片硝酸还原酶(NR)活性、一氧化氮(NO)含量、气体交换参数和籽粒产量的影响.结果表明:叶片光合速率(Pn)、蒸腾速率(Tr)、瞬时水分利用效率(IWUE)和产量均随施氮量的增加呈先升高后降低的趋势,在180 kg·hm-2氮处理时达到最高.随施氮量的增加,叶片NR活性提高; 在分蘖期和拔节期,叶片NR活性与NO含量呈显著线性相关(R2≥0.68,n=15),NO含量和气孔导度(Gs)呈显著正二次相关(R2≥0.43,n=15);低氮处理下,NR活性较低使叶片NO含量维持在较低水平,促进气孔开放,高氮处理下,NR活性较高使叶片NO含量增加,诱导气孔关闭;在抽穗期叶片NR活性和NO含量无显著相关关系,虽然NO含量和Gs也呈显著正二次相关(R2≥0.36,n=15),但不能通过施氮提高NR活性来影响叶片NO含量,进而调节叶片气孔行为.合理施氮使小麦叶片NO含量维持在较低水平,可提高叶片Gs、Tr和IWUE,增强作物抗旱能力,促进光合作用,提高小麦产量.  相似文献   

19.
Thirty-day-old seedlings of two jute species (Corchorus capsularis L. cv. JRC 212 and C. olitorius L. cv. JRO 632) were subjected to short-term salinity stress (160 and 200 mM NaCl for 1 and 2 d). Relative water content, leaf water potential, water uptake, transpiration rate, water retention, stomatal conductance, net photosynthetic rate and water use efficiency of both jute species decreased due to salinity stress. The decrease was greater in C. olitorius than in C. capsularis and with higher magnitude of stress. Greater accumulation of Na+ and Cl- and a lower ratio of K+/Na+ in the root and shoot of C. olitorius compared with C. capsularis were also recorded. Pretreatment of seedlings with kinetin (0.09 mM), glutamic acid (4 mM) and calcium nitrate (5 mM) for 24 h significantly improved net photosynthesis, transpiration and water use efficiency of salinity stressed plants, the effect being more marked in C. olitorius. Among the pre-treatment chemicals, calcium nitrate was most effective. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) in an adult oil palm (Elaeis guineensis) canopy were highest in the 9th leaf and progressively declined with leaf age. Larger leaf area (LA) and leaf dry mass (LDM) were recorded in middle leaves. P N showed a significant positive correlation with g s and a negative relationship with leaf mass per area (ALM). The oil palm leaf remains photosynthetically active for a longer time in the canopy which contributes significantly to larger dry matter production in general and greater fresh fruit bunch yields in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号