首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Microcrystalline arrays of Ca2+-transporting ATPase (EC 3.6.1.38) develop in detergent-solubilized sarcoplasmic reticulum upon exposure to 10-20 mM CaCl2 at pH 6.0 for several weeks at 2 degrees C, in a crystallization medium that preserves the ATPase activity for several months. Of 48 detergents tested, optimal crystallization was obtained with Brij 36T, Brij 56, and Brij 96 at a detergent:protein weight ratio of 4:1 and with octaethylene glycol dodecyl ether at a ratio of 2:1. Similar Ca2+-induced crystalline arrays were obtained with the purified or delipidated Ca2+-ATPase of sarcoplasmic reticulum but at lower detergent:protein ratios. The crystals are stabilized by fixation with glutaraldehyde and persist even after the removal of phospholipids by treatment with phospholipases A or C and by extraction with organic solvents. The crystals obtained so far can be used only for electron microscopy, but ongoing experiments suggest that under similar conditions large ordered arrays may develop that are suitable for x-ray diffraction analysis.  相似文献   

3.
The effect of hydrostatic pressure on the self-association of sarcoplasmic reticulum ATPase solubilized by nonionic detergent was studied in the pressure range of 1 atm up to 2 kilobars. Polarization of intrinsic tryptophan fluorescence or of fluorescence of a pyrene probe covalently attached to the ATPase was measured. An increase in hydrostatic pressure promoted dissociation of the protein into monomers. For a midpoint dissociation pressure of 1.3 kilobars, the standard volume change in the dissociation reaction was delta Vop = -167 ml/mol. Full reversibility of the pressure effects was shown to occur, as seen by recovery of polarization. An increase in Ca2+ concentration from 50 microM to 5 mM and of pH from 6.9 to 8.6 were found to increase the midpoint dissociation pressure, indicating that these factors stabilize the dimeric state. The hydrolytic activity of the ATPase was measured under pressure. The activity was inhibited by pressure increase. It was found that an irreversible inactivation of the solubilized enzyme occurred during turnover and that increasing pressure added to this instability. Reversibility of the activity was critically dependent on the presence of 10 mM Ca2+ in the assay medium.  相似文献   

4.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

5.
Dinitrophenylation of rabbit skeletal sarcoplasmic reticulum ATPase protein   总被引:1,自引:0,他引:1  
The ATPase (ATP phosphohydrolase (EC 3.6.1.3)) protein of rabbit skeletal sarcoplasmic reticulum rapidly incorporated three mol of 1-fluoro-2,4-dinitrobenzene per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-dependent ATPase activity was inhibited. The dinitrophenyl group was located mainly in the ATPase protein and a small amount of the label was found in the proteolipid component of the ATPase preparation as judged by dissociation experiments in sodium dodecyl sulfate. Cysteine and tyrosine residues were dinitrophenylated in the modified ATPase protein. Thiolysis of the dinitrophenylated ATPase protein with 2-mercaptoethanol under various conditions did not restore the Ca2+-dependent ATPase activity. Solubilization of the ATPase protein with sodium deoxycholate increased the reactivity of the reagent and the Ca2+-dependent ATPase activity was inhibited to a greater extent. Dinitrophenylation of the ATPase protein was Ca2+-dependent; in the presence of high Ca2+ the incorporation increased by 50% and a large decrease in the Ca2+-ATPase activity was noted. The half-maximal changes for the incorporation of the reagent and the inhibition of the Ca2+-ATPase activity occurred at 3--4 microgram Ca2+-concentration, consistent with the binding of Ca2+ to high affinity sites on the ATPase protein. These results indicate that the ATPase protein as a Ca2+-free and a Ca2+-bound conformation. The reagent, 1-fluoro-2,4-dinitrobenzene reacts differentially and thus characterizes these two conformations.  相似文献   

6.
The measurement of ATP binding to the sarcoplasmic reticulum membrane reveals that the calcium pump possesses one high affinity (Kd = 2--3 muM) site. Competition with substrate analogs show the high specifity of that site. At high ATP concentration another class of site can be detected with a much higher dissociation constant (Kd approximately 500 muM). This class of sites is of low specificity and ATP is easily displaced by other polyphosphates. The steady state rate of ATP cleavage is measured in the presence of ATP analogs. It is shown that the catalysis is due to the high affinity site. The activation of the hydrolysis rate at high substrate concentration may be related to the effect of binding of ATP to the weak sites. The effect of ATP analogs for various ATP concentration supports this hypothesis.  相似文献   

7.
The monomer-dimer association constant of solubilized and delipidated sarcoplasmic reticulum ATPase was measured by large zone elution gel chromatography in the presence of a high concentration (18.6 mM) of the nonionic detergent dodecyloctaethylene glycol monoether (C12E8) and of different ATPase protein concentrations in the range of 0.74 (6.4 nM monomers) to 30 (0.26 microM monomers) microgram/ml. The association equilibrium constant (Ka) obtained from the concentration-dependent dissociation curve was 9.37 X 10(7) M-1 at 24 degrees C. The derived free energy change (delta G0) for the monomer-dimer association was -10.8 kcal/mo, reflecting a high degree of tightness between inter-subunit domains in soluble dimeric ATPase. A steep dissociation curve within a short natural logarithmic span (2.5 units) was obtained when the degree of dissociation increased from 0.1 to 0.9, suggesting that a conformational drift accompanies the dissociation of soluble dimeric ATPase. A unique leading boundary was formed in the large zone chromatographies, indicating a reversible equilibrium which was rapid when compared to the time taken for the chromatographic run. Enzymatic activity was continuously monitored in the eluate, revealing that soluble ATPase at different degrees of dissociation was active.  相似文献   

8.
Treatment of rabbit sarcoplasmic reticulum vesicles with the cross-linking agent, cupric phenanthroline, causes production of high-molecular weight bands on SDS-gel electrophoresis. A plot of log mol wt vs mobility indicates that the main band produced from the ATPase (mol wt = 105) has a mol wt of 4 × 105 and thus suggests formation of a tetramer. Notably, bands corresponding to dimers, trimers, pentamers, etc., are absent. The bands attributable to calsequestrin and calcium binding protein are unchanged by cupric phenanthroline. With extended treatment, the tetramer itself is polymerized (mol wt>106). Partial disruption of the membranes with deoxycholate or Triton X-100 before cross-linking favors tetramer formation; the presence of sodium dodecyl sulfate, on the other hand, prevents intermolecular cross-linking. Our results suggest that the ATPase is at least partially associated within the membrane as a tetramer.  相似文献   

9.
G Inesi  J A Cohen  C R Coan 《Biochemistry》1976,15(24):5293-5298
The "total" ATPase activity of rabbit sarcoplasmic reticulum (SR) vesicles includes a Ca2+-independent component ("basic") and Ca2+-dependent component ("extra"). Only the "extra" ATPase is coupled to Ca2+ transport. These activities can be measured under conditions in which the observed rates approximate maximal velocities. The "basic" ATPase is predominant in one of the various SR fractions obtained by prolonged density-gradient centrifugation of SR preparations already purified by repeated differential centrifugations and extractions at high ionic strength. This fraction (low dnesity, high cholesterol) has a protein composition nearly identical with that of other SR fractions in which the "extra" ATPase is predominant. In these other fractions the ratio of "extra" to "basic" ATPase activities is temperature dependent, being approximately 9.0 at 40 degrees C and 0.5 at 4 degrees C. In all the fractions and at all temperatures studied, similar steady-state levels of phosphorylated SR protein are obtained in the presence of ATP and Ca2+. Furthermore, in all cases the "basic" (Ca2+-independent) ATPase acquires total Ca2+ dependence upon addition of the nonionic detergent Triton X-100. This detergent also transforms the complex substrate dependence of the SRATPase into a simple dependence, displaying a single value for the apparent Km. The experimental findings indicate that the ATPase of rabbit SR exists in two distinct functional states (E1 and E2), only one of which (E2) is coupled to Ca2+ transport. The E1 in equilibrium E2 equilibrium is temperature-dependent and entropy-driven, indicative of its relation to the physical state of the ATPase protein in its membrane environment. Thenonlinearity of Arrhenius plots of Ca2+-dependent ("extra") ATPase activity and Ca2+ transport is explained in terms of simultaneous contribtuions from both the free energy of activation of enzyme catalysis and the free energy of conversion of E1 to E2. Thermal equilibrium between the two functional states is drastically altered by factors which affect membrane structure and local viscosity.  相似文献   

10.
Calcium and proton dependence of sarcoplasmic reticulum ATPase   总被引:5,自引:1,他引:5       下载免费PDF全文
The influence of Ca2+ and H+ concentrations on the sequential reactions of the ATPase cycle was studied by a series of pre-steady state and steady state experiments with sarcoplasmic reticulum vesicles. It is shown that H+ competition with calcium binding results in a reduced population of activated enzyme, which is manifested by a lower level of phosphorylated enzyme intermediate following addition of ATP. Further effects of Ca2+ and H+ are demonstrated on the progression of the phosphoenzyme through the reaction cycle and on the final hydrolytic cleavage of Pi. The overall dependence of steady state ATP flux on Ca2+ and H+ concentrations in leaky vesicles is expressed by a series of curves showing that as the H+ concentration is raised higher Ca2+ concentrations are required to obtain half-maximal ATP fluxes. At saturating Ca2+, maximal ATP fluxes are observed at an intermediate H+ concentration (pH 7.2), while lower levels are obtained as the H+ concentration is reduced (to pH 8) or increased (to pH 6). A preliminary model is then proposed based on the presence of two interacting domains permitting competitive binding of Ca2+ or H+, per each catalytic site undergoing phosphorylation by ATP. The model considers three main states and thirteen substates (depending on the occupancy of the binding sites in each state by Ca2+, H+, or neither) in the progression of the ATP cycle, coupled to transport of Ca2+ and counter transport of H+ in leaky vesicles. Considering the preliminary nature of the model and the experimental scatter, a rather satisfactory agreement is noted between a family of curves generated by theoretical analysis and the ATP flux curves obtained experimentally.  相似文献   

11.
12.
13.
The mechanism of ATP hydrolysis was studied at 0 degrees C and pH 7.5 using purified leaky vesicles of sarcoplasmic reticulum Ca2+-ATPase and enzyme solubilized in monomeric form with high concentrations of octaethylene glycol monododecyl ether (C12E8). The enzyme reaction of membranous Ca2+-ATPase was characterized by an initial burst in the hydrolysis of ATP and modulated by millimolar concentrations of ATP. For detergent-solubilized Ca2+-ATPase no burst and moderate low affinity modulation was observed, but the reaction was activated both at low (phosphorylating) and intermediate (K0.5 = 0.06 mM) ATP concentrations. A study of the partial reactions indicated that the effects of detergent and ATP were attributable to activation of the E1P----E2P transition which was rate-limiting. E32P dephosphorylation of membranous Ca2+-ATPase and the detergent-solubilized monomer comprised both a slow and a rapid component. The inhibitory effect of high Ca2+ was correlated with the development of a dominant contribution of slow phase dephosphorylation and with ATP-induced extra binding of Ca2+ binding which presumably takes place at the phosphorylation site (ECaP). Ca2+ was bound with lesser affinity to detergent-solubilized Ca2+-ATPase but with qualitatively the same characteristics as to membranous ECaP. Either Ca2+ or Mg2+ was required for dephosphorylation, also after detergent solubilization. It is concluded that ATP hydrolysis occurs by the same steps for membranous and monomeric Ca2+-ATPase and involves formation of either EMgP or ECaP as reaction intermediates, leading to biphasic kinetics, which, therefore, cannot be taken as evidence of an oligomeric function of the enzyme.  相似文献   

14.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

15.
The role of reactive sulfhydryl groups of sarcoplasmic reticulum ATPase has been investigated. Incubation of ATPase with 17 mol o-iodosobenzoic acid per mol ATPase results in a 15% inhibition of Ca2+ uptake with only a 5% loss of ATPase activity. When ATPase is treated with 15 mol KMnO4 per mol ATPase, Ca2+ uptake is completely inhibited. From the measurement of remaining SH groups using 5,5'-dithiobis-(2-nitrobenzoic acid), it is found that the oxidation of approximately four SH groups per ATPase molecule with KMnO4 leads to a complete loss of Ca2+ uptake, while the oxidation of five SH groups per ATPase with o-iodosobenzoic acid results in only 15% inhibition of Ca2+ uptake. The results of amino acid analysis indicate that KMnO4 oxidizes the reactive SH groups to sulfonic acid groups. Among the five o-iodosobenzoic acid-reactive SH groups, at least one shows a distinct Ca2+ dependence. Addition of o-iodosobenzoic acid to the reaction medium containing KMnO4 does not increase the number of oxidized SH groups, indicating that both o-iodosobenzoic acid and KMnO4 oxidize the same SH groups of the enzyme. The different effects of two oxidizing agents on sarcoplasmic reticulum ATPase eliminate the possibility of direct involvement of SH group(s) in the ATPase reaction.  相似文献   

16.
17.
Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of less than or equal to 50 microM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high Ca2+ concentration (500 microM), monomeric Ca2+-ATPase was stable for several hours. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 10(5)-10(6) M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. These results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit.  相似文献   

18.
The substrate specificity of an extensively purified flavanone synthase from light-induced cell suspension cultures of Petroselinum hortense was investigated. p-Coumaroyl-CoA was found to be the only efficient substrate for flavanone synthesis, producing naringenin (5,7,4′-trihydroxyflavanone). Besides 4-hydroxy-6[4-hydroxystyryl]2-pyrone (F. Kreuzaler and K. Hahlbrock (1975) Arch. Biochem. Biophys.169, 84–90) two further release products of the synthase reaction in vitro were identified as 4-hydroxy-5,6-dihydro-6(4-hydroxyphenyl)2-pyrone and p-hydroxybenzalacetone. The apparent Km values for malonyl-CoA and p-coumaroyl-CoA in the reaction leading to naringenin, and for p-coumaroyl-CoA in the reaction leading to the styrylpyrone derivative were 35, 1.6, and 2.6 μm, respectively. With caffeoyl-CoA as substrate only a very small amount of eriodictyol (5,7,3′,4′-tetrahydroxyflavanone) was formed besides relatively large amounts of the corresponding styrylpyrone, dihydropyrone, and benzalacetone derivatives. No flavanone formation was observed with feruloyl-CoA as substrate, but again appreciable amounts of the three types of short-chain release products were formed. No reaction at all took place with cinnamoyl-CoA, p-methoxycinnamoyl-CoA, isoferuloyl-CoA, or p-hydroxybenzoyl-CoA.None of the styrylpyrone, dihydropyrone, and benzalacetone derivatives has been detected in the cell cultures in vivo. The present results suggest that naringenin is the only natural product of the synthase reaction and that further substitution in the B-ring of the flavonoids occurs in parsley at or after the flavanone stage. The nature of the smaller release products is consistent with the assumption of a stepwise addition of acetate units from malonyl-CoA to the acyl moiety of the starter molecule, p-coumaroyl-CoA.  相似文献   

19.
Three specimen preparation techniques for electron microscopy were used to investigate the incorporation of the ATPase polypeptide chains in the membranes of fragmented sarcoplasmic reticulum (SR) obtained from rabbit skeletal muscle. Observations were made of both normal vesicles and vesicles exposed to trypsin, which is known to cleave the ATPase protein and to alter the ultrastructure of the vesicles in predictable ways. Freeze-fracture replicas reveal the typical 90-A particles on the concave (PF) faces with a density of 5,730 +/- 520/mum2. On the other hand both negatively stained and deeply etched preparations display outer projections, which are absent on trypsin-incubated vesicles. The etched specimens afford for the first time top views of the vesicles in the absence of any stain. These views reveal outer projections on the PS surface with a density of 21,000 +/- 3,900/mum2, a value nearly approximating the density of the ATPase polypeptide chains (106,000 mol wt) calculated on the basis of protein and membrane area determinations. On the other hand, this value is three to four times higher than that found for the density of the 90-A particles on the concave fracture faces. Since both outer projections and 90-A particles are identified with the ATPase protein, it is suggested that the ATPase polypeptide chains are amphiphilic molecules, with polar ends protruding individually as outer projections on the surface of the vesicles, and hydrophobic ends appearing as 90-A particles on the concave fracture faces. The discrepancy between the densities of the outer projections and the 90-A particles may be attributed either to variable penetration of the polypeptide chains into the membrane bilayer, or to formation of oligomers containing three or four hydrophobic ends and appearing as single 90-A particles. Each ATPase chain forms a complex with 20-30 phospholipid molecules. The remaining phospholipids (approximately 70% of the total SR phospholipids) account for less than half the membrane volume. It is proposed that the outer leaflet of the SR membrane is prevalently composed of the ATPase lipoprotein complex, and the inner leaflet is mostly a phospholipid monolayer.  相似文献   

20.
Crystalline arrays of Ca2+-ATPase molecules develop in detergent-solubilized sarcoplasmic reticulum during incubation for several weeks at 2 degrees C under nitrogen in a medium of 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Electron microscopy of sectioned, negatively stained, freeze-fractured, and frozen-hydrated Ca2+-ATPase crystals indicates that they consist of stacked lamellar arrays of Ca2+-ATPase molecules. Prominent periodicities of ATPase molecules within the lamellae arise from a centered rectangular lattice of dimensions 164 x 55.5 A. The association of lamellae into three-dimensional stacks is assumed to involve interactions between the exposed hydrophilic headgroups of ATPase molecules, that is promoted by glycerol and 20 mM Ca2+. Similar Ca2+-induced crystals were observed with purified or purified and delipidated Ca2+-ATPase preparations at lower detergent/protein ratios. Cross-linking of Ca2+-ATPase crystals with glutaraldehyde protects the structure against conditions such as low Ca2+, high pH, elevated temperature, SH group reagents, high concentration of detergents, and removal of phospholipids by extraction with organic solvents that disrupt unfixed preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号