首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

2.
Synaptic vesicles from the Torpedo ray can be induced to aggregate in the presence of Ca2+ and K+ in the 4 mM and 50 mM range, respectively. The reactions are strikingly similar to those of chromaffin granule membranes reported previously (Morris, S.J., Chiu, V.C.K. and Haynes, D.H. (1979) Membrane Biochem. 2, 163-202). The Ca2+-induced reaction includes dimerization and higher order aggregation, and is shown to be due to electrostatic screening interactions and bindng to negatively-charged groups on the membrane surface. The K+-induced reaction includes only dimerization and is shown to be due to screening interactions alone. The kinetics of the dimerization reactions were studied using the stopped-flow rapid mixing technique. The Ca2+-induced reaction has a 'bimolecular' rate constant of 4.77 . 10(8) M-1 . s-1. These values are close to the limit of diffusion control (8.03 . 10(9) M-1 . s-1), indicating that no large energy barriers or structural barriers to aggregation exist. Arrhenius plots for the Ca2+-induced aggregation showed a break at 5 degrees C. Above this temperature, the activation energy is low (+0.65 kcal/mol), consistent with the above. Below this temperature, the activation energy is high, consistent with a membrane structure change increasing theenergetic and structural barriers. This information, and the observation of a high stability constant of the complex, were taken as evidence for the involvement of 'recognition sites' on the membrane surface. The results were analyzed in terms of an encounter complex model in which vesicles with separations of 26-126 A are considered capable of transformation into a stable complex. The rate constant of the transformation step is 1.4 . 10(3) s-1 for Ca2+ and approx. 1.6 . 10(5) s-1 for K+. The values are compared with previous results for chromaffin granule membranes and for phospholipid vesicles derived from chromaffin granule lipids and from acidic phospholipids. The half-time for Ca2+-induced transformation of the encounter complex into the stable complex is 435 microseconds. It is concluded that the recognition sites are almost as optimally deployed as the vesicle plasma membrane recognition sites involved in exocytotic release.  相似文献   

3.
《The Journal of cell biology》1985,101(5):1757-1762
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.  相似文献   

4.
Summary Semiquantitative immunohistochemical methods were used to demonstrate that at least some of the glycosaminoglycan contained within cholinergic synaptic vesicles is recycled during successive electrical stimulations of the electric organ of Torpedo marmorata.  相似文献   

5.
6.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the alpha- and beta-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis alpha-toxin-Sepharose columns. The data suggest that the alpha-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

7.
One electric organ of anaesthetized Torpedo marmorata was stimulated through electrodes placed on the electric lobe of the brain. Nerves to the other electric organ were cut to provide an unstimulated control. Glucose 6-[32P]phosphate was injected into each organ 16h before electrical stimulation. After stimulation for 10 min at 5 Hz, the organs were removed homogenized and centrifuged on a density gradient for the preparation of subcellular fractions. Stimulation increased the incorporation of 32P into phosphatidate, phosphatidylinositol and phosphatidylcholine. The increased phosphatidate labelling, but not that of the other two lipids, was seen in fractions rich in synaptic vesicles. Stimulation had no effect on ATP labelling. The phosphatidate content of most fractions fell slightly after stimulation, but amounts of other phospholipids were not affected.  相似文献   

8.
1. The distribution of phospholipids between the two leaflets of the lipid bilayer in acetylcholine receptor (AChR)-rich membranes from T. marmorata has been examined with two complementary techniques: chemical derivatization with the membrane-impermeable reagent trinitrobenzenesulphonate (TNBS) and B.cereus phospholipase C hydrolysis. 2. AChR-membranes were reacted with TNBS at 0-4 and 37 degrees C and the accessibility of their aminophospholipids was compared to that of rod outer segment and erythrocyte membranes. The results indicate that more of the total ethanolamine glycerophospholipid (EGP) than of the total phosphatidylserine (PS) is located in the outer monolayer. 3. Nearly half the phospholipid content of AChR membranes is hydrolyzed by phospholipase C with a half-time of ca. 1.6 min at 25 degrees C. Consistent with the TNBS results, more of the total EGP than of the total PS is degraded. Beyond 3 min the reaction slows down, relatively smaller additional amounts of lipids are hydrolyzed, and all phospholipid classes are attacked to a similar extent, indicating that after half the lipid is removed all phospholipids become accessible to the enzyme. 4. The results indicate that the outer leaflet of the bilayer is richer in ethanolamine and choline glycerophospholipids, whereas phosphatidylinositol, most of the sphingomyelin, and ca 65% of the PS are located on the inner leaflet.  相似文献   

9.
The selectivity of lipid-protein interaction for spin-labeled phospholipids and gangliosides in nicotinic acetylcholine receptor-rich membranes from Torpedo marmorata has been studied by ESR spectroscopy. The association constants of the spin-labeled lipids (relative to phosphatidylcholine) at pH 8.0 are in the order cardiolipin (5.1) approximately equal to stearic acid (4.9) approximately equal to phosphatidylinositol (4.7) > phosphatidylserine (2.7) > phosphatidylglycerol (1.7) > G(D1b) approximately equal to G(M1) approximately equal to G(M2) approximately equal to G(M3) approximately equal to phosphatidylcholine (1.0) > phosphatidylethanolamine (0.5). No selectivity for mono- or disialogangliosides is found over that for phosphatidylcholine. Aminated local anesthetics were found to compete with spin-labeled phosphatidylinositol, but to a much lesser extent with spin-labeled stearic acid, for sites on the intramembranous surface of the protein. The relative association constant of phosphatidylinositol was reduced in the presence of the different local anesthetics to the following extents: tetracaine (55%) > procaine (35%) approximately benzocaine (30%). For stearic acid, only tetracaine gave an appreciable reduction (30%) in association constant. These displacements represent an intrinsic difference in affinity of the local anesthetics for the lipid-protein interface because the membrane partition coefficients are in the order benzocaine > tetracaine approximately procaine.  相似文献   

10.
Density measurements made on cholinergic synaptic vesicles from the electric organs of Torpedo marmorata at different osmotic pressures are consistent with the following structural model of the vesicle. The particle behaves like a sphere 80-100 nm in diameter bounded by a semi-permeable membrane. The bulk of its soluble constituents are in true solution at physiological osmolalities. The limiting membrane is approximately 4-5 nm thick, suggesting that it contains large areas of phospholipid bilayer exposed to its bathing medium. The limiting membrane takes up about 26% (v/v) of the particle, a further 34% (v/v) of which is osmotically active water and 31% (v/v) hydrated core material at 800 mosmol/1. The buoyant density of the membrane is 1.132 g . cm-3. The density of the hydrated core material is approximately 1.05 g . cm-3. The membrane is selectively permeable to small molecules when subjected to hypo-osmotic stress. It is proposed that this occurs by the formation of small transient pores in the lipid bilayer of the membrane, which are induced by stretching caused by the osmotic pressure change.  相似文献   

11.
A rapid method for purifying Torpedo electric organ vesicles is described, which employs an isoosmotic continuous sucrose-glycine gradient followed by chromagography on CPG-10-3000 porous glass beads. The synaptic vesicles have a buoyant density of 1.057 g/ml. The purified vesicles are free of cholinesterase, lactate dehydrogenase and Na+, K+-stimulated ATPase activity. They contain a ouabaininsensitive, Na+, K+-inhibited, Mg2+, Ca2+-stimulated ATPase activity. This is further stimulated by acetylcholine but not by choline.  相似文献   

12.
At least two distinguishable forms of synaptic vesicles exist, the active and reserve, but the reserve form is studied most because it has been difficult to purify the active vesicles. In the work reported here the active vesicles (termed VP2) were highly enriched from the electric organ of Torpedo californica by an improved method developed for the reserve vesicles (termed VP1) with the addition of density gradient centrifugation based on Percoll. No significant differences between the vesicular types were found in the amounts of SV1, SV2, and SV4 epitopes and P-type and V-type ATPase activities. The buoyant densities (g/ml) of VP1 and VP2 vesicles were determined by centrifugation in isosmotic sucrose (1.051, 1.069), Percoll (1.034, 1.040), and glycerol (1.087, 1.090) gradients. The radii were determined by dynamic quasi-elastic laser light-scattering to be (56.6 ± 10.8) nm and (55.0 ± 12.7) nm. For both vesicular types the volume of excluded sucrose is only about 37% of the volume of excluded Percoll, indicating that the surfaces are rough. Approx. 51% of the VP1 and 32% of the VP2 vesicular volumes are ‘osmotically active’ water that is exchangeable with glycerol. The different buoyant densities and amounts of osmotically active water in VP1 and VP2 vesicles probably are due to the different internal solutes. Previously observed differences in acetylcholine active transport and vesamicol binding by VP1 and VP2 synaptic vesicles cannot be explained by major alterations in the protein composition or conformation of the membranes in the two types of vesicles.  相似文献   

13.
After fixation with glutaraldehyde and impregnation with tannic acid, the membrane that underlies the nerve terminals in Torpedo marmorata electroplaque presents a typical asymmetric triple-layered structure with an unusual thickness; in addition, it is coated with electron- dense material on its inner, cytoplasmic face. Filamentous structures are frequently found attached to these "subsynaptic densities." The organization of the subsynaptic membrane is partly preserved after homogenization of the electric organ and purification of acetylcholine- receptor (AchR)-rich membrane fragments. In vitro treatment at pH 11 and 4 degrees C of these AchR-rich membranes releases an extrinsic protein of 43,000 mol wt and at the same time causes the complete disappearance of the cytoplasmic condensations. Freeze-etching of native membrane fragments discloses remnants of the ribbonlike organization of the AchR rosettes. This organization disappears ater alkaline treatment and is replaced by a network which is not observed after rapid freezing and, therefore, most likely results from the lateral redistribution of the AchR rosettes during condition of slow freezing. A dispersion of the AchR rosettes in the plane of the membrane also occurs after fusion of the pH 11-treated fragments with phospholipid vesicles. These results are interpreted in terms of a structural stabilization and immobilization of the AchR by the 43,000- Mr protein binding to the inner face of the subsynaptic membrane.  相似文献   

14.
We have employed sulfhydryl group reagents in an attempt to determine the mechanism by which the transport of nucleotides into synaptic vesicles is controlled. Transport proved to be sensitive to N-ethylmaleimide; radiolabelled N-ethylmaleimide was used to locate the sulfhydryl group to the translocase-associated molecule previously identified as a polypeptide of Mr 34,000 [Lee and Witzemann (1983) Biochemistry 22, 6123-6130]. The nucleotide uptake was 75% inhibited by the mercurials rho-hydroxymercuribenzoate and rho-chloromercuriphenylsulfonate. Uptake was also sensitive to the reagents phenylarsine oxide and iodosobenzoic acid, which are specific for dithiols. These results indicate that a readily accessible dithiol is critical for nucleotide transport. Using the lipophilic oxidants iodosobenzoic acid and plumbagin, we demonstrated that nucleotide uptake was inhibited upon oxidation of the dithiol but that this did not involve an alteration in the affinity of the translocase for its substrate.  相似文献   

15.
A morphological comparison of neuromuscular and nerve-electroplaque synapses of torpedo was performed. Synaptic vesicles are much smaller at the neuromuscular synapse. The question of the respective role of these populations is raised.  相似文献   

16.
17.
18.
A rapid method for the preparation of highly purified cholinergic nerve endings from the electric organ of Torpedo is described. The endings retain their cytoplasmic components, as shown by biochemical and morphological observations. The homogeneity of these synaptosomes make them a useful tool for further studies.  相似文献   

19.
20.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号