首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using site-specific mutagenesis, we have constructed several mutants of uncoupling protein (UCP1) from brown adipose tissue to investigate the function of acidic side chains at positions 27, 167, 209, and 210 in H(+) and Cl(-) transport as well as in nucleotide binding. The H(+) transport activity was measured with mitochondria and with reconstituted vesicles. These mutant UCPs (D27N, D27E, E167Q, D209N, D210N, and D209N + D210N) are expressed at near wt levels in yeast. Their H(+) transport activity in mitochondria correlates well with the reconstituted protein except for D27N (intrahelical), which shows strong inhibition of H(+) transport in the reconstituted system and only 50% decrease of uncoupled respiration in mitochondria. In the double adjacent acidic residues (between helix 4 and helix 5), mutation of D210 and of D209 decreases H(+) transport 80% and only 20%, respectively. These mutants retain full Cl(-) transport activity. The results indicate that D210 participates in H(+) uptake at the cytosolic side and D27 in H(+) translocation through the membrane. Differently, E167Q has lost Cl(-) transport activity but retains the ability to transport H(+). The separate inactivation of H(+) and Cl(-) transport argues against the fatty acid anion transport mechanism of H(+) transport by UCP. The mutation of the double adjacent acidic residues (D209, D210) decreases pH dependency for only nucleoside triphosphate (NTP) but not diphosphate (NDP) binding. The results identify D209 and D210 in accordance with the previous model as those residues which control the location of H214 in the binding pocket, and thus contribute to the pH control of NTP but not of NDP binding.  相似文献   

2.
Brown adipose tissue (BAT) and brown in white (brite) adipose tissue, termed also beige adipose tissue, are major sites of mammalian nonshivering thermogenesis. Mitochondrial uncoupling protein 1 (UCP1), specific for these tissues, is the key factor for heat production. Recent molecular aspects of UCP1 structure provide support for the fatty acid cycling model of coupling, i.e. when UCP1 expels fatty acid anions in a uniport mode from the matrix, while uncoupling. Protonophoretic function is ensured by return of the protonated fatty acid to the matrix independent of UCP1. This mechanism is advantageous for mitochondrial uncoupling and compatible with heat production in a pro-thermogenic environment, such as BAT. It must still be verified whether posttranslational modification of UCP1, such as sulfenylation of Cys253, linked to redox activity, promotes UCP1 activity. BAT biogenesis and UCP1 expression, has also been linked to the pro-oxidant state of mitochondria, further endorsing a redox signalling link promoting an establishment of pro-thermogenic state. We discuss circumstances under which promotion of superoxide formation exceeds its attenuation by uncoupling in mitochondria and throughout point out areas of future research into UCP1 function.  相似文献   

3.
4.
The uncoupling protein from brown adipose tissue (UCP1) is a transporter that catalyzes a regulated discharged of the mitochondrial proton gradient. The proton conductance in UCP1 is inhibited by nucleotides and activated by fatty acids. We have recently shown that all-trans-retinoic acid (ATRA) is a high-affinity activator of UCP1. In the present report, we have set to analyze the structural requirements for the ligands that activate UCP1 and particularly the specificity for different retinoids. For this purpose, we have developed a new protocol to determine the activity of UCP1 in respiring yeast mitochondria that can be adapted for high-throughput screenings. Our results evidence differences between the structural requirements for the activation by fatty acids and retinoids. Thus, although all active retinoids must possess a carboxylate, the introduction of additional polar groups renders them inactive. The linear and rigid structure of these molecules suggests the existence of a long hydrophobic binding pocket. We postulate that the access to the retinoid binding site must occur from the lipid bilayer and this could be at the interface between two transmembrane alpha-helices.  相似文献   

5.
Uncoupling protein 2 (UCP2) mRNA expression and function was examined in rat primary cultured hepatocytes. UCP2 mRNA was not expressed in freshly isolated hepatocytes, but appeared during a 24-144 h primary culture period. Isolated mitochondria from 144 h cultured hepatocytes showed a lower oxygen consumption rate in the presence of succinate and ADP. However, the ratio of the oxygen consumption rate when media contained succinate alone to that with succinate and ADP was increased by 166% versus control mitochondria. Moreover, the mitochondrial potential in the presence of succinate was decreased by 60%, indicating the potential role of UCP2 in hepatocyte mitochondria as an active uncoupler.  相似文献   

6.
Nutrient availability is critical for the physiological functions of all tissues. By contrast, an excess of nutrients such as carbohydrate and fats impair health and shorten life due by stimulating chronic diseases, including diabetes, cancer and neurodegeneration. The control of circulating glucose and lipid levels involve mitochondria in both central and peripheral mechanisms of metabolism regulation. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in physiological and pathological processes related to glucose and lipid metabolism, and in this review we discuss the latest data on the relationships between UCP2 and glucose and lipid sensing from the perspective of specific hypothalamic neuronal circuits and peripheral tissue functions. The goal is to provide a framework for discussion of future therapeutic strategies for metabolism-related chronic diseases.  相似文献   

7.
In this study we show that mitochondrial uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and thymus mitochondria can be ubiquitinylated and degraded by the cytosolic proteasome. Using a ubiquitin conjugating system, we show that UCP1 can be ubiquitinylated in vitro. We demonstrate that UCP1 is ubiquitinylated in vivo using isolated mitochondria from brown adipose tissue, thymus and whole brown adipocytes. Using an in vitro ubiquitin conjugating-proteasome degradation system, we show that the cytosolic proteasome can degrade UCP1 at a rate commensurate with the half-life of UCP1 (i.e. 30-72h in brown adipocytes and ~3h, in thymocytes). In addition, we demonstrate that the cytoplasmic proteasome is required for UCP1 degradation from mitochondria that the process is inhibited by the proteasome inhibitor MG132 and that dissipation of the mitochondrial membrane potential inhibits degradation of UCP1. There also appears to be a greater amount of ubiquitinylated UCP1 associated with BAT mitochondria from cold-acclimated animals. We have also identified (using immunoprecipitation coupled with mass spectrometry) ubiquitinylated proteins with molecular masses greater than 32kDa, as being UCP1. We conclude that there is a role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial UCP1. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

8.
Previously we found that the organic components in scallop shell promote lipolysis in differentiated 3T3-L1 and C3H10T1/2 adipocyte cells, and that incorporating scallop shell powder into the diet of rats reduced the amount of white adipose tissue. In this study, we used RT-PCR to investigate the effect of ingesting scallop shell powder on the gene expression profile of uncoupling proteins (UCPs) regulating energy metabolism in rats.Feeding of scallop shell powder increased mRNA levels of UCP1 and UCP2 in white adipose tissue. By contrast, scallop shell powder had no effect on the expression of UCP1 in brown adipose tissue, although the expression level of UCP2 mRNA decreased significantly. These results suggest that feeding scallop shell powder increases gene expression of UCP1 that may regulate energy metabolism in white adipose tissue, resulting in the observed reduction in weight of white adipose tissue.  相似文献   

9.
This study has identified the expression of uncoupling proteins in a marsupial using molecular techniques. The Tasmanian bettong, Bettongia gaimardi, increases non-shivering thermogenesis (NST) in response to cold exposure and norepinephrine, although previous studies have been unable to demonstrate the presence of brown adipose tissue or uncoupling protein 1 (UCP1). This study used molecular techniques to confirm the absence of UCP1 as well as ascertain if this species expresses UCP2 and/or UCP3. Tissue samples from four B. gaimardi were taken prior to and post-cold exposure at 4-5 degrees C for 2 weeks. The tissues were then examined for UCP1, UCP2 and UCP3 expression using Western blotting. UCP2 and UCP3 were amplified through RT-PCR and subsequently sequenced to confirm molecular identity. Our work confirms that B. gaimardi does not express UCP1 and that this species expresses both uncoupling proteins 2 and 3. The sequencing of the amplified B. gaimardi UCP2 and UCP3 cDNAs have revealed a 74% homology with rat UCP2 cDNA, and 65% homology with rat UCP3 cDNA. Although this work has not yet characterised the functional properties of these proteins in the marsupial, it does suggest a possible mechanism to explain the existence of NST in B. gaimardi.  相似文献   

10.
11.
Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.  相似文献   

12.
Rat liver mitochondria contain a negligible amount of mitochondrial uncoupling protein UCP2 as indicated by 3H-GTP binding. UCP2 recruitment in hepatocytes during infection may serve to decrease mitochondrial production of reactive oxygen species (ROS), and this, in turn, would counterbalance the increased oxidative stress. To characterize in detail UCP2 recruitment in hepatocytes, we studied rats pretreated with lipopolysaccharide (LPS) or hepatocytes isolated from them, as an in vitro model for the systemic response to bacterial infection. LPS injection resulted in 3.3- or 3-fold increase of UCP2 mRNA in rat liver and hepatocytes, respectively, as detected by real-time RT-PCR on a LightCycler. A concomitant increase in UCP2 protein content was indicated either by Western blots or was quantified by up to three-fold increase in the number of 3H-GTP binding sites in mitochondria of LPS-stimulated rats. Moreover, H2O2 production was increased by GDP only in mitochondria of LPS-stimulated rats with or without fatty acids and carboxyatractyloside. When monitored by JC1 fluorescent probe in situ mitochondria of hepatocytes from LPS-stimulated rats exhibited lower membrane potential than mitochondria of unstimulated rats. We have demonstrated that the lower membrane potential does not result from apoptosis initiation. However, due to a small extent of potential decrease upon UCP2 recruitment, justified also by theoretical calculations, we conclude that the recruited UCP2 causes only a weak uncoupling which is able to decrease mitochondrial ROS production but not produce enough heat for thermogenesis participating in a febrile response.  相似文献   

13.
Piglets appear to lack brown adipose tissue, a specific type of fat that is essential for nonshivering thermogenesis in mammals, and they rely on shivering as the main mechanism for thermoregulation. Here we provide a genetic explanation for the poor thermoregulation in pigs as we demonstrate that the gene for uncoupling protein 1 (UCP1) was disrupted in the pig lineage. UCP1 is exclusively expressed in brown adipose tissue and plays a crucial role for thermogenesis by uncoupling oxidative phosphorylation. We used long-range PCR and genome walking to determine the complete genome sequence of pig UCP1. An alignment with human UCP1 revealed that exons 3 to 5 were eliminated by a deletion in the pig sequence. The presence of this deletion was confirmed in all tested domestic pigs, as well as in European wild boars, Bornean bearded pigs, wart hogs, and red river hogs. Three additional disrupting mutations were detected in the remaining exons. Furthermore, the rate of nonsynonymous substitutions was clearly elevated in the pig sequence compared with the corresponding sequences in humans, cattle, and mice, and we used this increased rate to estimate that UCP1 was disrupted about 20 million years ago.  相似文献   

14.
Brown fat is a thermogenic organ that allows newborns and small mammals to maintain a stable body temperature when exposed to cold. The heat generation capacity is based on the uncoupling of respiration from ATP synthesis mediated by the uncoupling protein UCP1. The first studies on the properties of these mitochondria revealed that fatty acid removal was an absolute prerequisite for respiratory control. Thus fatty acids, that are substrate for oxidation, were proposed as regulators of respiration. However, their ability to uncouple all types of mitochondria and the demonstration that several mitochondrial carriers catalyze the translocation of the fatty acid anion have made them unlikely candidates for a specific role in brown fat. Nevertheless, data strongly argue for a physiological function. First, fatty acids mimic the noradrenaline effects on adipocytes. Second, there exists a precise correlation between fatty acid sensitivity and the levels of UCP1. Finally, fatty acids increase the conductance by facilitating proton translocation, a mechanism that is distinct from the fatty acid uncoupling mediated by other mitochondrial carriers. The regulation of UCP1 and UCP2 by retinoids and the lack of effects of fatty acids on UCP2 or UCP3 are starting to set differences among the new uncoupling proteins.  相似文献   

15.
16.
Human uncoupling protein (UCP3) is a mitochondrial transmembrane carrier that uncouples oxidative phosphorylation and is a candidate gene for obesity. Expression of native human UCP3 mutations in yeast showed complete loss (R70W), significant reduction (R143X), or no effect (V102I and IVS6+1G > A) on the uncoupling activity of UCP3. It is concluded that certain mutations in UCP3 alter its functional impact on membrane potential (deltaphi), possibly conferring susceptibility to develop metabolic diseases.  相似文献   

17.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

18.
Tomás P  Ledesma A  Rial E 《FEBS letters》2002,526(1-3):63-65
Retinoic acid is a potent activator of the uncoupling protein-1 (UCP1) both at the gene and mitochondrial level. Irradiation with ultraviolet light can be used to directly photolabel proteins with retinoic acid. The procedure has been applied to investigate its interaction with UCP1 isolated from brown adipose tissue mitochondria. All-trans-retinoic acid binds to UCP1 with high affinity and the labeling is only partially protected by guanosine diphosphate. Ubiquinone (UQ) has been described to be an obligatory cofactor for uncoupling protein function and we demonstrate that it greatly increases the affinity of UCP1 for retinoic acid. Data support the notion of a direct interaction between UQ and retinoic acid.  相似文献   

19.
The aim of the present study was to monitor the daily rhythm of rectal and cutaneous temperatures together with the changes in the serum levels of mitochondrial uncoupling protein 1 (UCP1) in equine and goat species. On five gelding horses and five female goat rectal and cutaneous temperatures were recorded at 4 h intervals for a 48 h period. At the same time points blood samples were collected from each animal. Daily rhythms of rectal and cutaneous temperatures were observed in both species, in both day of monitoring. Mesor value of rectal temperature was statistically higher of about 4 °C than cutaneous temperature, and acrophase was postponed of about 2 h in both day of monitoring and in both species. UCP1 did not show daily rhythmicity in horses and goats. We can speculate that the thermogenesis due to thermal system is auxiliary to keeping the body temperature daily rhythm.  相似文献   

20.
Synthesis of the brown adipocyte-specific mitochondrial uncoupling protein thermogenin (UCP) is demonstrated here in brown adipocytes differentiated in culture from precursor cells. By immunoblotting, no UCP was detectable in untreated multilocular adipocytes. The synthesis of UCP was stimulated by norepinephrine at physiological concentrations and was observable already after 2 h. It was evident from immunoelectron microscopy that the newly synthesised protein was targeted to the mitochondrial inner membrane, demonstrating the functional competence of these cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号