首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
An extracellular phosphatase was purified to homogeneity from the entomopathogenic fungus Metarhizium anisopliae with a 41.0% yield. The molecular mass and isoelectric point of the purified enzyme were about 82.5 kDa and 9.5 respectively. The optimum pH and temperature were about 5.5 and 75 degrees C when using O-phospho-L-tyrosine as substrate. The protein displayed high stability in a pH range 3.0-9.5 at 30 degrees C and was remarkably thermostable at 70 degrees C. The purified enzyme showed high activity on O-phospho-L-tyrosine and protein tyrosine phosphatase substrate monophosphate (a specific substrate of protein tyrosine phosphatase). Although one peptide of the phosphatase shared identity with one alkaline phosphatase of Neurospora crassa, its substrate specificity and inhibitor sensitivity indicate that the enzyme is a protein tyrosine phosphatase.  相似文献   

2.
Helicobacter pylori vacuolating cytotoxin, VacA, induces vacuolation, mitochondrial damage, cytochrome c release, and apoptosis of gastric epithelial cells. To detect gastric proteins that serve as VacA receptors, we used VacA co-immunoprecipitation techniques following biotinylation of the cell surface and identified p250, a receptor-like protein-tyrosine phosphatase beta (RPTP beta) as a VacA-binding protein (Yahiro, K., Niidome, T., Kimura, M., Hatakeyama, T., Aoyagi, H., Kurazono, H., Imagawa, K., Wada, A., Moss, J., and Hirayama, T. (1999) J. Biol. Chem. 274, 36693-36699). VacA causes vacuolation of G401 cells, a human kidney tumor cell line, although they do not express RPTP beta. By co-immunoprecipitation with VacA, we identified p140 as a potential receptor in those cells. p140 purified by chromatography on a peanut agglutinin affinity matrix contained internal amino acid sequences of RGEENTDYVNASFIDGYRQK and AEGILDVFQTVK, which are identical to those in RPTP alpha. The peptide mass fingerprinting of p140 by time of flight-MS analysis also supported this identification. Treatment of G401 cells with RPTP alpha-morpholino antisense oligonucleotide before exposure to toxin inhibited vacuolation. These data suggest that RPTP alpha acts as a receptor for VacA in G401 cells. Thus, two receptor tyrosine phosphatases, RPTP alpha and RPTP beta, serve as VacA receptors.  相似文献   

3.
The beta-glucuronidase in homogenates of 12-day chick embryo livers catalyzed the release of glucuronic acid from 4-methylumbelliferyl-beta-D-glucuronide and from the nonreducing terminals of the hexasaccharides of chondroitin-6-SO4 and chondroitin-4-SO4 at rates of 143, 114, and 108 nmol of glucuronic acid/h/mg of protein, respectively, when assayed at pH 3.5 in 0.05 M sodium acetate buffer. During a 60-fold purification of the enzyme, the ratios of the activities on these substrates did not change. When 4-methylumbelliferyl-beta-D-glucuronide was used as substrate the enzyme was active at pH values from 3.0 to 5.5, with maximal activity between pH values 4.0 and 4.5. Concentrations of NaCl from 0.15 to 0.3 M inhibited the activity at low pH values but activated the enzyme between pH 4.0 and 5.5. The enzyme was active on the chondroitin-6-SO4 hexasaccharide from pH 3.0 to 5.5, with a broad optimum between 3.0 and 4.5. NaCl inhibited the activity on the oligosaccharide substrate at all pH values. Eadie-Scatchard plots of rates of 4-methylumbelliferyl-beta-D-glucuronide hydrolysis at substrate concentrations ranging from 2 to 1000 microM showed multiple kinetic forms of the enzyme, a form with a Km of approximately 11 microM, and a second form with a Km of approximately 225 microM. The pH optimum of the low Km form was 3.5 to 4.0; that of the high Km form was pH 4.5. NaCl inhibited the activity of the low Km form, but activated the high Km form of the enzyme. Chondroitin SO4 oligosaccharides competed with 4-methylumbelliferyl-beta-D-glucuronide for the low Km form of the enzyme but had little effect on the hydrolysis of 4-methylumbelliferyl-beta-D-glucuronide by the high Km form of the enzyme. The activities of the beta-glucuronidase on tetra-, hexa-, octa-, and decasaccharides of chondroitin-6-SO4 and chondroitin-4-SO4, measured using a new assay procedure which can detect the formation of 1 nmol of product, were similar, although rates were somewhat lower for the higher oligosaccharides. With the exception of the chondroitin-4-SO4 tetrasaccharide, all of the oligosaccharide substrates saturated the enzyme at concentrations of 20 to 30 microM, indicating Km values of less than 10 to 15 microM for the oligosaccharides. Highly purified beta-glcuronidases from human placenta and from rat preputial gland also showed multiple kinetic forms when assayed using 4-methylumbelliferyl-beta-D-glucuronide as substrate.  相似文献   

4.
We have examined the potential for using calf uterine progesterone receptor (PR) as a substrate for phosphorylation by cAMP-dependent protein kinase (cAMP-PK), PR was found to interact with anti-PR monoclonal antibody alpha PR6 (Sullivan et al., 1986), which was to immunopurify the receptor. Protein staining of the purified preparation revealed the presence of two major bands corresponding to 114 kDa and 90 kDa peptides; only 114 kDa peptide could be photoaffinity-labeled with R5020. The 90 kDa peptide co-migrated with 90 kDa heat shock protein (hsp-90) precipitated by anti-hsp-90 monoclonal antibody AC88 (Riehl et al., 1985). Incubation of the immunopurified protein-A-Sepharose-adsorbed PR with the catalytic subunit of cAMP-PK in the presence of gamma-[32P]ATP and divalent cations resulted in a Mg++-dependent incorporation of 32P-radioactivity into both the 114 kDa and the hsp-90 peptides. Small 32P-incorporation was also seen in the 114 kDa peptide in the presence of Mn++. A 60 degrees C preincubation of immunopurified PR increased the extent of phosphorylation of the hsp-90 peptide. A pretreatment with alkaline phosphatase reduced the ability of PR to act as a substrate while the steroid occupancy of PR appeared to enhance the phosphorylation of the 114 kDa peptide. The differential cation requirement for the phosphorylation of 114 kDa and hsp-90 peptides and a selective hormone-dependent increase in the phosphorylation of the 114 kDa peptide suggest a possible role of phosphorylation in mediating progesterone action in the calf uterus.  相似文献   

5.
J den Hertog  S Tracy    T Hunter 《The EMBO journal》1994,13(13):3020-3032
Receptor protein-tyrosine phosphatase alpha (RPTP alpha) is a transmembrane protein with a short extracellular domain (123 amino acids) and two cytoplasmically localized protein-tyrosine phosphatase (PTP) domains. Here we report that RPTP alpha is constitutively phosphorylated on tyrosine in NIH 3T3 mouse fibroblasts. The in vivo tyrosine phosphorylation site was localized to the C-terminus of RPTP alpha by phosphopeptide mapping experiments using in vivo and in vitro 32P-labeled RPTP alpha. The identity of this site as Tyr789, located five residues from the C-terminus, was confirmed by site-directed mutagenesis. Transient overexpression of c-Src together with RPTP alpha in human embryonic kidney 293 cells increased phosphorylation of Tyr789, suggesting that c-Src may phosphorylate RPTP alpha in vivo. RPTP alpha had autodephosphorylation activity in vitro. When expressed in 293 cells the level of Tyr789 phosphorylation was higher in a non-functional mutant of RPTP alpha than in wild type RPTP alpha, indicating that RPTP alpha may have autodephosphorylation activity in vivo as well. The sequence on the C-terminal side of Tyr789 (YANF) fits the consensus binding site for the SH3-SH2-SH3 adaptor protein GRB2 (YXNX). We show that RPTP alpha, but not a mutant of RPTP alpha with a Tyr-->Phe mutation at position 789, bound to GRB2 in vitro. In addition, RPTP alpha co-immunoprecipitated with GRB2 from NIH 3T3 cells, demonstrating that GRB2 bound to RPTP alpha in vivo. The guanine nucleotide releasing factor for the Ras GTPase, Son of sevenless (Sos), which associates with GRB2 via its SH3 domains, was not detected in RPTP alpha immunoprecipitates. Our results suggest a role for RPTP alpha in attenuation of GRB2-mediated signaling.  相似文献   

6.
Guo YL  Roux SJ 《Plant physiology》1995,107(1):167-175
A pea (Pisum sativum L.) nuclear enzyme with protein tyrosine phosphatase activity has been partially purified and characterized. The enzyme has a molecular mass of 90 kD as judged by molecular sieve column chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Like animal protein tyrosine phosphatases it can be inhibited by low concentrations of molybdate and vanadate. It is also inhibited by heparin and spermine but not by either the acid phosphatase inhibitors citrate and tartrate or the protein serine/threonine phosphatase inhibitor okadaic acid. The enzyme does not require Ca2+, Mg2+, or Mn2+ for its activity but is stimulated by ethylenediaminetetraacetate and by ethyleneglycolbis(beta-aminoethyl ether)-N,N'-tetraacetic acid. It dephosphorylates phosphotyrosine residues on the four different 32P-tyrosine-labeled peptides tested but not the phosphoserine/threonine residues on casein and histone. Like some animal protein tyrosine phosphatases, it has a variable pH optimum depending on the substrate used: the optimum is 5.5 when the substrate is [32P]tyrosine-labeled lysozyme, but it is 7.0 when the substrate is [32P]tyrosine-labeled poly(glutamic acid, tyrosine). It has a Km of 4 microM when the lysozyme protein is used as a substrate.  相似文献   

7.
Here we report that protein tyrosine phosphatases (PTPases), like their enzymatic counterpart the protein tyrosine kinases, can play an important role in cell differentiation. Expression of the transmembrane PTPase receptor protein tyrosine phosphatase alpha (RPTP alpha) is transiently enhanced during neuronal differentiation of embryonal carcinoma (EC) and neuroblastoma cells. Retinoic acid induces wild type P19 cells to differentiate into endoderm- and mesoderm-like cells. By contrast, retinoic acid treatment leads to neuronal differentiation of P19 cells, ectopically expressing functional RPTP alpha, as illustrated by their ability to generate action potentials. Endogenous pp60c-src kinase activity is enhanced in the RPTP alpha-transfected cells, which may be due to direct dephosphorylation of the regulatory Tyr residue at position 527 in pp60c-src by RPTP alpha. Our results demonstrate that RPTP alpha is involved in neuronal differentiation and imply a role for pp60c-src in the differentiation process.  相似文献   

8.
L-Methionine gamma-lyase from Pseudomonas putida has a conserved tyrosine residue (Tyr114) in the active site as in all known sequences of y-family pyridoxal 5'-phosphate dependent enzymes. A mutant form of L-methionine y-lyase in which Tyr114 was replaced by phenylalanine (Y114F) resulted in 910-fold decrease in kcat for alpha,gamma-elimination of L-methionine, while the Km remained the same as the wild type enzyme. The Y114F mutant had the reduced kcat by only 28- and 16-fold for substrates with an electron-withdrawing group at the gamma-position, namely O-acetyl-L-homoserine and L-methionine sulfone, respectively, and also the similar reduction of kcat for alpha,beta-elimination and deamination substrates. The hydrogen exchange reactions of substrate and the spectral changes of the substrate-enzyme complex catalyzed by the mutant enzyme suggested that gamma-elimination process for L-methionine is the rate-limiting determination step in alpha,gamma-elimination overall reaction of the Y114F mutant. These results indicate that Tyr114 of L-methionine gamma-lyase is important in y-elimination of the substrate.  相似文献   

9.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

10.
The precise subcellular localization of non-receptor tyrosine phosphatases is a major factor in regulating their physiological functions. We have previously shown that cellular processing of protein-tyrosine phosphatase epsilon (PTP epsilon) generates a physiologically distinct, cytoplasmic form of this protein, p65 PTP epsilon. Here we describe a novel protein form of the related receptor-type tyrosine phosphatase alpha (RPTP alpha), p66 PTP alpha, which is detected in nearly all cell types where RPTP alpha is expressed. Both p66 PTP alpha and p65 PTP epsilon are produced by calpain-mediated proteolytic cleavage in vivo. Cleavage is inhibited in living cells by a variety of calpain inhibitors, can be induced in primary cortical neurons treated with calcium chloride, and is observed in lysates of brain or of cultured cells following addition of purified calpain. Cleavage occurs within the intracellular juxtamembrane domain of RPTP alpha, releasing the phosphatase catalytic domains from their membranal anchors and translocating them to the cytoplasm. Translocation reduces the ability of PTPalpha to act on membrane-associated substrates, as it loses its ability to dephosphorylate Src at its C-terminal regulatory site, and its ability to dephosphorylate the Kv2.1 voltage-gated potassium channel is severely impaired. In all, the data indicate that control of phosphatase function via post-translational processing occurs also among receptor-type phosphatases, and demonstrate the molecular complexity of regulating these parameters within the PTP alpha/PTP epsilon phosphatase subfamily.  相似文献   

11.
N‐acetylglucosaminyltransferase V (GnT‐V) has been reported to be positively associated with tumor progression, but its mechanism still remains unknown. In the present study, we found that GnT‐V overexpression not only changed the glycosylation of receptor protein tyrosine phosphatase kappa (RPTPκ) but also decreased its protein level. Moreover, GnT‐V overexpression decreased cell calcium‐independent adhesion and increased the tyrosine phosphorylation level of β‐catenin, in which RPTPκ played an important role. Since RPTPκ has an RXKR motif, which is a favored cleavage site for furin, we used furin inhibitor to further explore the effect of RPTPκ on the change of cell adhesion and β‐catenin signaling induced by GnT‐V. Our results showed that preventing RPTPκ cleavage rescued the above effects of GnT‐V, suggesting that furin cleavage could be one of the factors for RPTPκ to regulate cell adhesion and β‐catenin signaling in GnT‐V overexpression cell lines. In addition, the increased tyrosine phosphorylation level of β‐catenin was associated with the increased nuclear level of β‐catenin and downstream signaling molecules such as c‐myc and cyclin D1 that were associated with cell proliferation. Our results suggest that GnT‐V could decrease human hepatoma SMMC‐7721 cell adhesion and promote cell proliferation partially through RPTPκ. J. Cell. Biochem. 109: 113–123, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

13.
Two open reading frames in the Mycobacterium tuberculosis genome, Rv3372 and Rv2006, have about 25% sequence identity at the amino acid level to the trehalose-phosphate phosphatase (TPP) purified from Mycobacterium smegmatis. However, the protein produced from the cloned Rv3372 gene has a molecular weight of about 45kDa whereas the trehalose-P phosphatase purified from M. smegmatis has a molecular weight of about 27kDa. We expressed the Rv3372 protein in Escherichia coli and show here that it is a trehalose-P phosphatase with very similar properties to the M. smegmatis TPP, i.e., complete specificity for trehalose-phosphate as the substrate, an almost absolute requirement for Mg(2+), and a pH optimum of 7-7.5. On the other hand, in contrast to the M. smegmatis enzyme, the Rv3372 protein was much less stable to heat and much less sensitive to inhibition by diumycin and moenomycin. In fact, both of these antibiotics stimulate enzyme activity at low concentrations and only inhibit the activity at higher antibiotic concentrations. Antibody prepared against the 27kDa TPP does not cross react with the 45kDa TPP nor does antibody against the 45kDa TPP cross react with the 27kDa TPP. Nevertheless, studies of secondary structure by circular dichroism indicate that the two enzymes are quite similar in structure. The product of the other gene, Rv2006, is a 159kDa protein with no detectable phosphatase activity. Thus, its function is currently unknown.  相似文献   

14.
《The Journal of cell biology》1996,134(6):1513-1517
RPTP mu is a receptor-like protein tyrosine phosphatase that mediates homophilic cell-cell interactions. Surface expression of RPTP mu is restricted to cell-cell contacts and is upregulated with increasing cell density, suggesting a role for RPTP mu in contact-mediated signaling. It was recently reported (Brady-Kalnay, S.M., D.L. Rimm, and N.K. Tonks. 1995. J. Cell Biol. 130:977-986) that RPTP mu binds directly to cadherin/catenin complexes, and thus may regulate the tyrosine phosphorylation of such complexes. Here we report that this concept needs revision. Through reciprocal precipitations using a variety of antibodies against RPTP mu, cadherins, and catenins, we show that RPTP mu does not interact with cadherin/catenin complexes, even when assayed under very mild lysis conditions. We find that the anti- RPTP mu antiserum used by others precipitates cadherins in a nonspecific manner independent of RPTP mu. We conclude that, contrary to previous claims, RPTP mu does not interact with cadherin complexes and thus is unlikely to directly regulate cadherin/catenin function.  相似文献   

15.
Soluble low Km 5'-nucleotidase from human seminal plasma has been purified to homogeneity by one affinity and two gel-filtration chromatographic steps. The pure enzyme had a specific activity of 2000 nmol min-1 mg-1. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified low Km 5'-nucleotidase revealed a single polypeptide band of 40 +/- 7 kDa and a tetrameric structure of 160 +/- 10 kDa has been proposed for the native enzyme. The kinetic properties of low Km 5'-nucleotidase have been determined and rather unique characteristics have been found for this soluble low Km 5'-nucleotidase: the substrate efficiency was slightly higher for IMP with an optimum pH at 7.5; the enzyme showed an absolute dependence on Mg2+ ions. Ca2+ could replace Mg2+ ions for activity while other divalent cations could not substitute for Mg2+; the enzymes were equally activated by ATP and ADP up to 0.1 mM concentrations. At higher concentrations up to 1 mM, ADP was still an activator while ATP caused a gradual decrease of activation to the native activity. This effect could not be related to the Mg-ATP = complexes since the enzymic preparation Mg(2+)-free still showed the same biphasic pattern of activation.  相似文献   

16.
Cumulative evidence supports an important role for RPTPσ in the development of the nervous system and nerve regeneration. However, the signaling mechanisms regulated by RPTPσ remain largely unknown and the identification of RPTPσ substrate(s) and binding partners is essential to understanding its mechanisms of action. We employed a modified yeast-two-hybrid approach, the yeast substrate-trapping system, to identify new substrates and interacting partners of RPTPσ. The binding proteins RPTPδ, Liprinα4, p130Cas and Trio were found to interact with RPTPσ in the yeast system independently of tyrosine phosphorylation. Importantly, using the trapping mutant of RPTPσ we identified p250GAP as a novel substrate and RPTPσ displayed its phosphatase specificity toward p250GAP in vitro. In the mammalian expression system, the trapping mutant of RPTPσ recognized p250GAP as its physiological substrate in the presence of active Fyn, suggesting that the interaction of the two proteins is primarily dependent on tyrosine phosphorylation. Furthermore, p250GAP activity increased in the presence of RPTPσ leading to attenuated Rac activity. Overexpression of p250GAP and RPTPσ inhibited axonal outgrowth in differentiated PC12 cells. Cumulative evidence implicates that RPTPσ modulates the actin cytoskeleton by regulating Rac GTPase activity through p250GAP. Taken together, our results demonstrate for the first time that RPTPσ modulates Rac dependent activity through regulating a novel substrate, p250GAP.  相似文献   

17.
Griebau R  Frentzen M 《Plant physiology》1994,105(4):1269-1274
Phosphatidylglycerophosphate synthase (sn-glycerol-3-phosphate:CDP-diacylglycerol phosphatidyltransferase) and phosphatidylglycerophosphate phosphatase were characterized in mung bean (Vigna radiata L.) mitochondria. The synthase has a rather broad pH optimum between 7 and 9, whereas the phosphatase has one of about 7. Both enzymic activities are stimulated by Triton X-100 and require divalent cations but differ in their cation specificities. The synthase shows apparent Km values of 9 and 3 [mu]M for sn-glycerol-3-phosphate and CDP-diacylglycerol, respectively. Phosphatidylglycerophosphate, in contrast to lysophosphatidic and phosphatidic acid, is effectively dephosphorylated by the phosphatase, which exhibits an apparent Km value of 12 [mu]M for its substrate. Each enzyme shows higher activities with the dipalmitoyl species of its substrate than with the dioleoyl species. These substrate specificities of both enzymes are predominantly based on differences in apparent Vmax values.  相似文献   

18.
Pheochromocytoma tyrosine hydroxylase was reported to have unusual catalytic properties, which might be unique to the tumor enzyme (Dix, T. A., Kuhn, D. M., and Benkovic, S. J. (1987) Biochemistry 24, 3354-3361). Two such properties, namely the apparent inability to hydroxylate phenylalanine and an unprecedented reactivity with hydrogen peroxide were investigated further in the present study. Tyrosine hydroxylase was purified to apparent homogeneity from cultured pheochromocytoma PC12 cells. The purified tumor enzyme was entirely dependent on tetrahydrobiopterin (BH4) for the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine and hydrogen peroxide could not substitute for the natural cofactor. Indeed, in the presence of BH4, increasing concentrations of hydrogen peroxide completely inhibited enzyme activity. The PC12 hydroxylase exhibited typical kinetics of tyrosine hydroxylation exhibited typical kinetics of tyrosine hydroxylation, both as a function of tyrosine (S0.5 Tyr = 15 microM) and BH4 (apparent Km BH4 = 210 microM). In addition, the enzyme catalyzed the hydroxylation of substantial amounts of phenylalanine to tyrosine and 3,4-dihydroxyphenylalanine (apparent Km Phe = 100 microM). Phenylalanine did not inhibit the enzyme in the concentrations tested, whereas tyrosine showed typical substrate inhibition at concentrations greater than or equal to 50 microM. At higher substrate concentrations, the rate of phenylalanine hydroxylation was equal to or exceeded that of tyrosine. Essentially identical results were obtained with purified tyrosine hydroxylase from pheochromocytoma PC18 cells. The data suggest that the tumor enzyme has the same substrate specificity and sensitivity to hydrogen peroxide as tyrosine hydroxylase from other tissues.  相似文献   

19.
The stimulation of activated human T lymphocytes with IL-2 results in increased tyrosine kinase activity. IL-2 treatment of Tac+ T cells stimulates the rapid phosphorylation of multiple protein substrates at M of 116, 100, 92, 70 to 75, 60, 56, 55, 33, and 32 kDa. Phosphorylation on tyrosine residues was detected by immunoaffinity purification of protein substrates with Sepharose linked antiphosphotyrosine mAb, 1G2. Although phorbol ester stimulated serine phosphorylation of the IL-2R alpha (p55) subunit recognized by alpha TAC mAb, IL-2 did not stimulate any detectable phosphorylation of IL-2R alpha or associated coimmune precipitated proteins. In fact, the tyrosine phosphorylated proteins did not coprecipitate with alpha Tac antibody and similar phosphoproteins were stimulated by IL-2 in IL-2R alpha- human large granular lymphocytes which express only the 70 to 75 kDa IL-2R beta subunit of the high affinity IL-2R. Anti-Tac mAb could inhibit IL-2-stimulated tyrosine phosphorylation in activated T cells, which express both IL-2R subunits that together form the high affinity receptor complex, but not in large granular lymphocytes expressing only the IL-2R beta subunit. The data suggest that IL-2 stimulation of tyrosine kinase activities requires only the IL-2R beta subunit.  相似文献   

20.
A human placental soluble "high Km" 5'-nucleotidase has been separated from "low Km" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase is most active with IMP and GMP and their deoxy derivatives. IMP is hydrolyzed 15 times faster than AMP. The enzyme has a virtually absolute requirement for magnesium ions and is regulated by them. Purine nucleoside 5'-triphosphates strongly activate the enzyme with the potency order dATP greater than ATP greater than GTP. 2,3-Diphosphoglycerate activates the enzyme as potently as ATP. Three millimolar ATP decreased the Km for IMP from 0.33 to 0.09 mM and increased the Vmax 12-fold. ATP activation was modified by the IMP concentration. At 20 microM IMP the ATP-dependent activation curve was sigmoidal, while at 2 mM IMP it was hyperbolic. The A0.5 values for ATP were 2.26 and 0.70 mM, and the relative maximal velocities were 32.9 and 126.0 nmol/min, respectively. Inorganic phosphate shifts the hyperbolic substrate velocity relationship for IMP to a sigmoidal one. With physiological concentrations of cofactors (3 mM ATP, 1-4 mM Pi, 150 mM KCl) at pH 7.4, the enzyme is 25-35 times more active toward 100 microM IMP than 100 microM AMP. These data show that: (a) soluble human placental high Km 5'-nucleotidase coexists in human placenta with the low Km enzyme; (b) under physiological conditions the enzyme favors the hydrolysis of IMP and is critically regulated by IMP, ATP, and Pi levels; and (c) kinetic properties of ATP and IMP are each modified by the other compound suggesting complex interaction of the associated binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号