首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. In contrast to populations of most dioecious Silene species (which usually are female-biased), populations of Silene otites have been frequently reported to be male-biased. We describe sex ratio variation in 34 natural S. otites populations in Central Germany in relation to vegetation cover, population size and fungal infection. The overall sex ratio was unbiased in 1994 and only slightly male-biased in 1995. Sex ratio varied among the populations from 26.6 % to 72.6 % females. The sex ratio of small populations varied strongly due to stochastic processes. Furthermore, we found that populations in habitats with high vegetation cover contained a higher percentage of females. Hermaphroditic plants, theoretically, could increase male bias as they only produce male or hermaphroditic offspring. Their frequency in the populations, however, was far too low to affect sex ratio. In 1994 12.1 % and in 1995 17.0 % of the plants were infected by the smut fungus Ustilago major. Disease incidence in the population was not related to sex ratio, suggesting equal susceptibility of males and females. The sex ratio of partially infected plants did not deviate from the population sex ratio, both under field conditions and in a greenhouse laboratory experiment. The results suggest that the frequently reported male bias in Silene otites populations is not a general pattern, but is mainly caused by environmental conditions.  相似文献   

2.
In dioecious plants, differences in growth traits between sexes in a response to micro-environmental heterogeneity may affect sex ratio bias and spatial distributions. Here, we examined sex ratios, stem growth traits and spatial distribution patterns in the dioecious clonal shrub Aucuba japonica var. borealis, in stands with varying light intensities. We found that male stems were significantly more decumbent (lower height/length ratio) but female stems were upright (higher height/length ratio). Moreover, we found sex-different response in stem density (no. of stems per unit area) along a light intensity gradient; in males the stem density increased with increases in canopy openness, but not in females. The higher sensitivity of males in increasing stem density to light intensity correlated with male-biased sex ratio; fine-scale sex ratio was strongly male-biased as canopy openness increased. There were also differences between sexes in spatial distributions of stems. Spatial segregation of sexes and male patches occupying larger areas than female patches might result from vigorous growth of males under well-lit environments. In summary, females and males showed different growth responses to environmental variation, and this seemed to be one of possible causes for the sex-differential spatial distributions and locally biased sex ratios.  相似文献   

3.
Patterns of phenological variation and reproductive investment were studied in the dioecious shrub Baccharis dracunculifolia DC (Asteraceae), and possible consequences on survivorship were evaluated. The sex ratio was determined in a natural field population (n = 921) of B. dracunculifolia in Belo Horizonte, Brazil. Fifty-two males and 56 females were sampled at random from this population. During the reproductive season of 1999, inflorescence production, shoot growth and mortality, and xylem water potential were recorded for each individual. The population sex ratio was male-biased (1.27 : 1, P < 0.05), and was associated with a higher mortality of female shoots (38.4 vs. 23.1 %, P < 0.05), and individuals (17.8 vs. 11.5 %, P < 0.1), despite lower water stress in female plants. Flowering phenology also differed between the sexes, with males producing more inflorescences, and earlier, than females. Owing to fruit maturation, the number of inflorescences supported by females was higher than that supported by males later in the reproductive season. This occurred during the dry season, and drought stress may have been responsible for the greater female mortality. Thus, the male-biased sex ratio in this population of B. dracunculifolia is probably due to different reproductive functions of males and females. Intersexual differences in reproductive phenology had consequences for plant demography.  相似文献   

4.
A field survey of plant and flower sex ratio and secondary sex characteristics was made in Silene alba. Female-biased plant sex ratios were found, as seems typical for the species. Sex ratio distribution correlated with a gradient of soil moisture (with the more moist area having a more female-biased ratio) and with changes in the density of Silene (intermediate and higher density areas having greater female bias). The floral sex ratio was significantly female-biased only at the site that was most female-biased in terms of plant sex ratio. Otherwise the population of flowers was significantly male-biased. Male and female plants harvested from the field differed in secondary sexual characteristics. Males had more flowers and invested proportionately more biomass in leaf, but less in root, stem and reproductive tissue than did females. Although both males and females were larger in terms of total dry weight at the moist site, males produced more flowers at the driest (high density) site. Here the female bias in plant sex ratio was intermediate, but the floral sex ratio was significantly male-biased. A glasshouse experiment was performed in which plants were grown at four densities. Density significantly influenced plant survivorship and the probability of flowering, and increased female bias in the pots, but it did not affect patterns of biomass allocation in flowering plants. Patterns of male and female biomass allocation did not differ in the experiment, except in terms of reproductive allocation (greater in females) and allocation to leaf, greater in males, but only at the lowest density. This work urges caution in interpreting differences between males and females in the field as secondary sex characteristics, since we find such properties to be overlapping under experimental conditions. It supports the idea that males and females of a species may sustain different reproductive output under differing conditions.  相似文献   

5.
In dioecious plants the fraction of males among flowering plants in the field (the secondary sex ratio) is the result of the fraction of males in the seeds (the primary sex ratio) and the subsequent survival and age at first reproduction of the two genders. It has been assumed that survival and age at first reproduction are the main determinants of biased secondary sex ratio but, especially for long-lived perennials, few data are available. We address this issue for natural populations of four long-lived perennials in a dune area. In Asparagus officinale and Bryonia dioica, the secondary sex ratio was unbiased. In Salix repens the secondary sex ratio was female-biased (0.337). Hippophae rhamnoides populations were male-biased; the average sex ratio of flowering plants was 0.658, while the fraction of males varied between 0.39 near the sea to 0.84 at the inland side of the dunes. The primary sex ratio was estimated by germinating seeds and growing plants under favourable conditions with minimal mortality. In S. repens the primary sex ratio in seeds was variable among mother plants and was, on average, female-biased (0.289). This is close to the secondary sex ratio, suggesting that the female bias already originates in the seed stage. In Hippophae rhamnoides the primary sex ratio was slightly male-biased (0.564). We argue that in this species, apart from the primary sex ratio, higher mortality and a later age at first reproduction for females contribute to the strong male bias among flowering plants in the field.  相似文献   

6.
Male-biased sex ratios in adult odonate populations have been the subject of vigorous discussion between the students of this order of insects. The debate has centered on whether the observed male bias in many populations is real, perhaps due to unequal survival rates, or whether it is an artifact caused by differences in recapture probabilities. A mark–recapture study to assess the relative contribution of survivorship and recapture rates on male-biased sex ratio was performed in a Cuban population of the damselfly Hypolestes trinitatis. Maximum likelihood theory and Akaike information criterion were used for parameter estimation and model selection, respectively. Females in the sample were outnumbered two to one by males. Estimated recapture and survival rates were 0.188 (females) and 0.638 (males), and 0.933 (females) and 0.944 (males), respectively. Recapture rates only partially explained the bias since the population sex ratio estimated after correcting for differences in this parameter was male biased (1.5). The observed higher survival probabilities in males could have generated the male-biased population sex ratio. Therefore, we concluded that the observed male-biased population sex ratio in H. trinitatis is real.  相似文献   

7.
Sex ratio and sexual dimorphism of Borderea pyrenaica, a long-lived dioecious geophyte endemic to the Pyrenees (north-east Iberian Peninsula), were examined in three alpine populations. In this species, age can be estimated and the sex of nonreproductive adult plants identified. Male plants attain sexual maturity earlier, flower more frequently and grow faster than female plants, whereas females allocate a higher biomass to reproduction than males. These results support the hypothesis that female plants incur a higher cost of sexual reproduction and that this higher cost is measurable as reduced vegetative growth and lower flowering frequency. Variation of sex ratio among young, intermediate and old adults within populations suggests, however, that this higher female reproductive investment does not result in sexual differences in mortality. The overall male-biased sex ratio in B. pyrenaica is mainly a consequence of the tendency of males to reproduce at an earlier age and more frequently than females.  相似文献   

8.
Monogynous mating systems (low male mating rates) occur in various taxa and have evolved several times independently in spiders. Monogyny is associated with remarkable male mating strategies and predicted to evolve under a male-biased sex ratio. While male reproductive strategies are well documented and male mating rates are easy to quantify, especially in sexually cannibalistic species, female reproductive strategies, the optimal female mating rate, and the factors that affect the evolution of female mating rates are still unclear. In this study, we examined natural female mating rates and tested the assumption of a male-biased sex ratio and female polyandry in a natural population of Argiope bruennichi in which we controlled female mating status prior to observations. We predicted variation in female mating frequencies as a result of spatial and temporal heterogeneity in the distribution of mature females and males. Females had a low average mating rate of 1.3 and the majority copulated only once. Polyandry did not entirely result from a male-biased sex-ratio but closely matched the rate of male bigamy. Male activity and the probability of polyandry correlated with factors affecting pheromone presence such as virgin females' density. We conclude that a strong sex ratio bias and high female mating rates are not necessary components of monogynous mating systems as long as males protect their paternity effectively and certain frequencies of bigyny stabilise the mating system.  相似文献   

9.
Sticky trap catch of pear psylla,Cacopsylla pyricola Foerster, is male biased during the reproductive generations, but not the diapausing generation. In cage studies, we monitored movement by male and female pear psylla between host plants, and tested whether reproductive and diapausing psylla exhibit similar rates of movement. We also experimentally varied sex ratio to determine whether sex ratio affected movement. Male-biased sex ratios prompted increased movement off of the original host by male psylla of the reproductive generations; no such effect was noted for diapausing insects. We interpret these results to indicate that male movements increased under male-biased conditions due to mate-searching activities. There was also evidence in two experiments that severely male-biased sex ratios prompted movement off of the original host plant by reproductive females; this effect may have been due to harassment of ovipositing females by males.  相似文献   

10.
1. There is ongoing controversy about whether biased sex ratios in diploid insect populations are real or an artefact caused by different behaviours and/or different catchability of the sexes. This was tested by monitoring two field and three semi-natural populations of the damselfly Lestes sponsa. 2. Capture–mark–recapture data showed that population size estimates were about twice as large for males as for females at both field sites. Independent estimates of the sex ratios based on total numbers of males and females captured supported the male bias. 3. Males had higher recapture probabilities than females due to longer times between successive visits in females. Because the same pattern was found in the semi-natural populations, the longer intervals in females are no artefact due to their lower detectability. 4. Theoretical models show that the strong temporary emigration of females tends, if anything, to overestimate female population sizes and that the heterogeneity of recapture probabilities observed in males tends to underestimate male population sizes. Hence, behavioural differences between the sexes do not cause an artificially male-biased sex ratio. 5. Spatial data show that operational sex ratios are male biased at the pond but become female biased in the plots further away from the shoreline; however because of the decrease in densities away from the shoreline, this does not result in a global even sex ratio. 6. Spatial data, temporary emigration patterns, and independent estimates suggest strongly that the male-biased sex ratios in mature damselfly populations are real.  相似文献   

11.
Drought stress responses and sensitivity of dioecious plants, such as Populus cathayana Rehd., are determined by different mechanisms in each sex. In general, males tend to be more resistant while females are more sensitive. Here, we used reciprocal grafting between males and females to determine the relative importance of roots and shoots when plants are exposed to drought stress. Total dry matter accumulation (DMA), photosynthetic capacity, long‐term water‐use efficiency (Δ), water potential and ultrastructure of mesophyll cells were evaluated to determine the different roles of root and shoot in sex‐related drought responses. Plants with male roots were found to be more resistant and less sensitive to water stress than those with female roots under drought conditions. On the contrary, plants with female shoots grew better than those with male shoots under well‐watered conditions. These results indicated that the sensitivity of males and females to water stress is primarily influenced by root processes, while under well‐watered conditions sexual differences in growth are primarily driven by shoot processes. Furthermore, grafting female shoot scion onto male rootstock was proved to be an effective mean to improve resistance to water stress in P. cathayana females.  相似文献   

12.
M. Kenis 《BioControl》1996,41(2):217-224
Five factors known to affect the sex ratio (% of males) in parasitic Hymenoptera were investigated forCoeloides sordidator, a parasitoid ofPissodes weevils. The host age, the age of ovipositing females, and the host of origin had a significant impact on the sex ratio of offspring. In contrast, the number of ovipositing females had an insignificant effect on sex ratio whereas the effect of host density could not be clearly defined. The sex ratio decreased with host age, probably because, like many other hymenopteran parasitoids, females tend to lay male eggs on small hosts and female eggs on larger hosts in order to maximize the size and fitness of their female offspring. The sex ratio also varied with the age of the mother, younger females laying more male eggs and older females more female eggs. The host of origin also had an influence on sex ratio. The strain fromPissodes castaneus was significantly more male-biased than the strain fromP. validirostris, which corroborates previous observations made on field populations  相似文献   

13.
Males are dominant over females in many bird species. This may lead to male monopolisation of resources whenever food is scarce or clumped and secondarily to lower female survival rates. As a result of the consequent male-biased sex ratio in the adult population, competition may arise either (1) between males and females, as males attempt to exclude females from feeding patches, or (2) between males because females do not pose a competitive threat. We recorded agonistic interactions between males and females in wintering foraging flocks of serins (Serinus serinus) and siskins (Carduelis spinus) to test for inter-specific differences. Most of the aggressive interactions in serins were between males and females, whereas in siskins they were between males. We also compared sex ratios for each species during the winter, determined from separate trapping efforts over an 11-year period, to test whether the direction of aggression by males (i.e. male/male; male/female) relates to variations in female survival rates. The proportion of females was smaller in winter than in autumn for serins, but differences in siskins were negligible. Results are interpreted in relation to the social organization displayed by both species studied.  相似文献   

14.
When the costs of rearing males and females differ progeny sex ratios are expected to be biased toward the less expensive sex. Blue-footed booby (Sula nebouxii) females are larger and roughly 32% heavier than males, thus presumably more costly to rear. We recorded hatching and fledging sex ratios in 1989, and fledging sex ratios during the next 5 years. In 1989, the sample of 751 chicks showed male bias at hatching (56%) and at fledging (57% at ˜90 days). Fledging sex ratios during the five subsequent reproductive seasons were at unity (1 year) or male-biased, varying from 56% to 70%. Male bias was greater during years when mean sea surface temperature was warmer and food was presumably in short supply. During two warm-water years (only) fledging sex ratio varied with hatching date. Proportions of male fledglings increased with date from 0.48 to 0.73 in 1994, and from 0.33 to 0.79 in 1995. Similar results were obtained when the analysis was repeated using only broods with no nestling mortality, suggesting that the overall increase in the proportion of males over the season was the result of sex ratio adjustments at hatching. The male-biased sex ratio, and the increased male bias during poor breeding conditions supports the idea that daughters may be more costly than sons, and that their relative cost increases in poor conditions. Received: 3 February 1998 / Accepted: 12 September 1998  相似文献   

15.
In populations of dioecious plants, the differences in the cost of reproduction between male and female plants can promote a male-biased sex ratio. In this study, we examine the macronutrient levels in tissues of the dioecious wetland shrub Myrica gale to identify the cost of reproduction for male and female plants and to examine the effect of nutrients on the apparent sex ratio at the ramet level. We examined plants across 12 populations of M. gale inhabiting bogs and fens in Japan. For each population, we used line transects to estimate the apparent sex ratio and measured the concentrations of nitrogen (N), phosphorus (P), and potassium (K) in the leaves sampled from male and female plants and in the fruits from female plants. For five of the populations, we calculated the flowering frequency, mortality, and the recruitment rate (as the rate of clonal propagation). We found that the proportion of females was positively affected, and the male bias of sex ratios reduced, by increases in P concentration in leaves sampled from female plants. Neither mortality nor recruitment was affected by sex or by the nutrient concentration (P, K). The flowering frequency was not affected by sex or by K concentration, but decreased with decreases in the P concentration measured in leaves. This study confirmed that reproduction in M. gale is P-limited. We found no distinct differences in the flowering frequency, mortality, or recruitment rate between the male and female plants.  相似文献   

16.
Monogyny (male monogamy) is found in a diverse assemblage of taxa, and recent theoretical work reveals that a male-biased sex ratio can favour the evolution of this relatively rare mating system. We integrate this theoretical framework with field observations and laboratory experiments involving the sexually size dimorphic fishing spider, Dolomedes tenebrosus, to test the prediction that this species exhibits monogyny. Field surveys revealed a male-biased sex ratio, likely resulting from different life-history strategies (early male maturation). Results from mating trials supported our prediction of monogyny as we discovered that males mate with a single female. Unexpectedly, however, we observed that mating results in obligate male death and genital mutilation. Additional field observations of released individuals suggest that males are not limited by their ability to encounter additional females. Controlled laboratory assays demonstrated that males discriminate among virgin and non-virgin female silk cues, consistent with predictions of first-male sperm precedence. In summary, we report a novel case of male self-sacrifice in a species that exhibits female-biased sexual size dimorphism, male-biased sex ratio, genital mutilation and a suggestion of first-male sperm precedence; all of which are consistent with theoretical predictions of the evolution of monogyny.  相似文献   

17.
P. Wirtz    S. Kopka    G. Schmoll 《Journal of Zoology》1992,228(4):641-651
Five years' data on phenology of an Anthidium manicatum population in southern Germany and comparative observations on A. manicatum and A. florentinum from southern France are analysed. Males and females had the same flight season, adult sex ratio was strongly female biased and males were larger than females in both species. This is the opposite pattern to most other solitary bees, where females generally are larger than males, sex ratio is male-biased, males emerge before females and males disappear long before females. We argue that two features of Anthidium female behaviour, namely prolonged sexual receptivity and use of resources easily defendable by males, explain male adaptations in behaviour, phenology and body size and, hence, population sex ratio.  相似文献   

18.
We examined the sex ratios of adults and nestlings in the cooperatively breeding bell miner Manorina melanophrys . Males were over-represented among helpers (mean of 6.8 male helpers per nest compared to 0.3 female helpers). 58% of nestlings sampled were identified as male using a molecular genetic marker. This was a significant departure from parity, yet the magnitude of the bias varied between years. The beneficial and male-biased nature of helping behaviour in this species and the similar size of male and female nestlings suggest the net cost of raising males is lower than the cost of raising females. Consequently, the male-biased sex ratio of nestlings we observed is consistent with the predictions of the repayment hypothesis that females may bias the production of their young towards the more helpful sex. Difficulties of generating quantitative predictions from repayment models that can be tested in the field are discussed.  相似文献   

19.
The extent to which sex ratio bias is a common reproductive characteristic of prosimians has not been well established. The present study analyzed reproduction in 13 breeding groups of captive prosimians for evidence of birth sex ratio bias. A substantial male bias was demonstrated in nongregarious, but not gregarious, breeding groups. Analyses of birth sex ratios of individual mothers suggested that the observed bias did not result from the tendency of a few mothers to overproduce males, but rather from a small but reliable excess of male births in general. An examination of infant mortality revealed that male Otolemur garnettii and Microcebus murinus infants were more vulnerable to preweaning mortality, whereas female Eulemur fulvus albifrons infants were more vulnerable. An analysis of birth order by sex found that mothers of one group (O. garnettii) tended to produce males initially and females later. Additionally, a distinct pattern of birth seasonality was noted among Malagasy prosimians that was absent in the African prosimians. Greater length of period of sexual receptivity for nongregarious females as compared to gregarious females is proposed as a possible mechanism of male birth sex ratio bias. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Sex investment ratios in populations of bumblebees are male biased, which contradicts theoretical predictions. Male-biased investment ratios in eusocial Hymenoptera are assumed to be non-stable for both the queen and her workers. In this paper, we show that male-biased sex allocation does not necessarily decrease fitness in the bumblebee Bombus terrestris. A male-biased investment ratio can be the result of an optimal allocation of resources when resources are scarce if (i) there is a large cost difference between male and female production, (ii) there is uncertainty about the amount of resources a colony can invest, and (iii) only a proportion of the investment made in an individual can be reused. This resource allocation then leads to split sex ratios depending on the amount of resources available to a bumblebee colony: colonies under low resource conditions will show a male-biased investment ratio, whereas colonies under high resource conditions allocate more resources towards females. However, the extent to which bumblebee populations show a male-biased sex allocation cannot be explained by cost differences between male and female production alone. In a recent paper, A. F. G. Bourke argued that male-biased investment ratios in bumblebee populations are a by-product of the occurrence of protandry (males emerge before females). Here we will extend Bourke''s argument and show that within a protandrous population, both protandrous and protogynous (females emerge before males) colonies exist. The existence of protandrous and protogynous colonies results in split sex ratios in time, because protogynous colonies rely on males produced by protandrous colonies (partial protandry).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号