首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the cockroach central nervous system (CNS). Electrophysiological assays performed at cercal-afferent giant-interneuron (GI) synapses demonstrated that a biphasic (transient and stable phases) increase in membrane conductance, in response to long-lasting (30-s) neuropilar pressure microapplication of GABA, could be explained by the presence of two GABA-operated chloride channel receptor subtypes in the postsynaptic membrane. The low stable membrane conductance increase, representing less than 30% of the maximum response, reached during the early transient phase, was not desensitized quickly. It was reproduced by neuropilar pressure microapplication of cis-4-aminocrotonic acid (CACA) and was not, as the fast phase, antagonized by bath application of 10μM picrotoxin (PTX). Imidazole-4-acetic acid (I-4AA) and Zn2+ did not modulate GABA and CACA-induced responses. Furthermore, a presynaptic target site for CACA, that modulates Ach release, was identified. Arch. Insect Biochem. Physiol. 37:231–238, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the final destination.  相似文献   

3.
Glycine is a major inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates and invertebrates. The postsynaptic receptor for this amino acid is an oligomeric glycoprotein which, upon binding of glycine, transiently forms an anion-selective transmembrane channel. Agonist-mediated receptor activation is antagonized by strychnine, a high-affinity ligand of the glycine receptor (GlyR). Biochemical and immunological data show that affinity-purified preparations of the mammalian GlyR contain three polypeptides of Mr 48,000, 58,000 and 93,000. These polypeptides have different functional properties and/or topologies in the postsynaptic membrane of the glycinergic synapse. The primary sequence of the Mr 48,000 subunit deduced by cDNA cloning exhibits structural and amino-acid homology to nicotinic acetylcholine and GABAa receptor proteins, indicating a common evolutionary relationship between the different neurotransmitter-gated ion channels of excitable membranes. Monoclonal antibodies against the GlyR allow its histochemical localization in different regions of the CNS. GlyR deficiencies have been implicated in the pathogenesis of spasticity and spinal cord degeneration in mouse and man.  相似文献   

4.
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.  相似文献   

5.
Glycine is a major inhibitory neurotransmitter in the spinal cord and in the brain stem, where it acts by activating a chloride conductance. The postsynaptic glycine receptor has been purified and contains two transmembrane subunits of 48 kDa (α) and 58 kDa (β), and a peripheral membrane protein of 93 kDa. cDNA sequencing of the α and β subunits has revealed a common structural organization and a strong homology between these polypeptides and the nicotinic acetylcholine and GABAA receptor proteins. The glycine receptor exhibits a heterogeneity resulting from the existence of several α subtypes with distinct functional properties and different developmental expressions. When present in the central nervous system in situ, as well as in primary cultures of spinal cord neurons, these receptors are localized at the postsynaptic membrane adjacent to the presynaptic release sites, thus forming functional microdomains at the neuronal surface. This distribution raises the question of the formation and the maintenance of the heterogeneity of the somato-dendritic plasma membrane.  相似文献   

6.
Ivermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated by low nanomolar ivermectin concentrations. The crystal structure of the Caenorhabditis elegans α GluClR complexed with ivermectin has recently been published. Here, we probed ivermectin sensitivity determinants on the α1 GlyR using site-directed mutagenesis and electrophysiology. Based on a mutagenesis screen of transmembrane residues, we identified Ala288 and Pro230 as crucial sensitivity determinants. A comparison of the actions of selamectin and ivermectin suggested the benzofuran C05-OH was required for high efficacy. When taken together with docking simulations, these results supported a GlyR ivermectin binding orientation similar to that seen in the GluClR crystal structure. However, whereas the crystal structure shows that ivermectin interacts with the α GluClR via H-bonds with Leu218, Ser260, and Thr285 (α GluClR numbering), our data indicate that H-bonds with residues homologous to Ser260 and Thr285 are not important for high ivermectin sensitivity or direct agonist efficacy in A288G α1 GlyRs or three other GluClRs. Our data also suggest that van der Waals interactions between the ivermectin disaccharide and GlyR M2-M3 loop residues are unimportant for high ivermectin sensitivity. Thus, although our results corroborate the ivermectin binding orientation as revealed by the crystal structure, they demonstrate that some of the binding interactions revealed by this structure do not pertain to other highly ivermectin-sensitive Cys-loop receptors.  相似文献   

7.
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha(1) homomeric and alpha(1)beta heteromeric glycine receptors (GlyRs). At low (0.03 microm) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (> or =0.03 microm) concentrations it irreversibly activated both alpha(1) homomeric and alpha(1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin. Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.  相似文献   

8.
Intraperitoneal administration of L-threonine increased the glycine and threonine concentrations in rat spinal cord. Glycine contents also increased in synaptosomes prepared from spinal cords from threonine-pretreated animals. These findings suggest that plasma threonine concentrations normally might affect production of glycine by central nervous system neurons, and also that exogenous threonine might be useful in modifying glycinergic transmission.  相似文献   

9.
Yue X  Wang JH  Qin LY 《生理科学进展》2008,39(3):247-250
HCN通道(hyperpolarization-activated cyclic nucleotide-gated channels)是一种超极化激活的,选择性通透K 、Na ,直接受cAMP调控的离子通道,其在神经系统中有多方面的功能并与癫痫等神经疾病有关系.对HCN通道正常生理功能以及与疾病的关系的深入认识,必将对今后的研究和临床有深远的意义.  相似文献   

10.
Possible sensory receptor of nonadrenergic inhibitory nervous system   总被引:2,自引:0,他引:2  
To determine the sensory receptor of the nonadrenergic inhibitory nervous system (NAIS), 22 cats were anesthetized and serotonin was continuously administered (50-250 micrograms.kg-1.min-1 iv) to increase pulmonary resistance (RL) to 377 +/- 57% (SE) of the control value. We then 1) mechanically irritated the trachea, 2) intravenously administered capsaicin (5 micrograms/kg), or 3) induced hypoxia (arterial PO2 30-40 Torr) to stimulate irritant and bronchial C-fiber receptors, pulmonary C-fiber receptors, or the carotid body (chemoreceptors), respectively. After treatment with atropine (3 mg/kg iv) and propranolol (2 mg/kg iv), the serotonin-induced change in RL was reduced by 58.6 +/- 14.3% by mechanical irritation and 63.3 +/- 12.1% by intravenous capsaicin. However, hypoxia produced no dilatation of the airways. In further experiments, we employed capsaicin inhalation to stimulate bronchial C-fiber receptors. Inhaled capsaicin (0.1%, for 5 breaths) also reduced RL by 79.2 +/- 9.2% of the elevated value, after atropine and propranolol. Treatment with a ganglionic blocking agent, hexamethonium (2 mg/kg iv), abolished bronchodilator responses, implying that a reflex pathway through vagal nerves is involved in this phenomenon. These results suggest that pulmonary and bronchial C-fiber receptors may be involved as sensory receptors in NAIS reflex bronchodilatation.  相似文献   

11.
12.
Disorders of the inhibitory glycine receptor: the spastic mouse   总被引:4,自引:0,他引:4  
C M Becker 《FASEB journal》1990,4(10):2767-2774
The mutant mouse spastic suffers from a motor disorder of autosomal recessive inheritance which is characterized by tremor, myoclonic episodes, and a disturbed righting response. The most prominent alteration in the mutant is a substantial deficit of postsynaptic glycine receptor channels resulting in a dramatic reduction of glycinergic synaptic inhibition. Function and structure of the glycine receptor protein appear unaffected, which argues for a regulatory rather than a structural effect of the spastic mutation. It appears that other alterations in the spastic mouse are secondary to this fundamental disturbance in the balance of excitatory and inhibitory impulses. In particular, a significant increase in GABAA receptors of the lower parts of the CNS may serve a compensatory function, counteracting in part losses of glycinergic inhibition. Pharmacological experiments indeed show that facilitation of GABAA receptor-mediated inhibition alleviates symptoms of the spastic motor disorder. The recent cDNA cloning of glycine receptor subunits should help define the molecular mechanism by which the spastic gene causes the glycine receptor deficit.  相似文献   

13.
Abstract— The ability of cholinergic agonists to block the specific interaction of α-bungarotoxin (α-Bgt) with membrane-bound sites derived from rat brain is enhanced when membranes are preincubated with agonist. Thus, pretreatment of α-Bgt receptors with agonist (but not antagonist) causes transformation of sites to a high-affinity form toward agonist. This change in receptor state occurs with a half-time on the order of minutes, and is fully reversible on dilution of agonist. The results are consistent with the identity of α-Bgt binding sites as true central nicotinic acetylcholine receptors. Furthermore, this agonist-induced alteration in receptor state may represent an in vitro correlate of physiological desensitization. As determined from the effects of agonist on toxin binding isotherms, and on the rate of toxin binding to specific sites, agonist inhibition of toxin binding to the high-affinity state is non-competitive. This result suggests that there may exist discrete toxin-binding and agonist-binding sites on central toxin receptors.  相似文献   

14.
15.
The T cell marker CD26/dipeptidyl peptidase (DP) IV is associated with an effector phenotype and markedly elevated in the human CNS disorder multiple sclerosis. However, little is known about the in vivo role of CD26/DP IV in health and disease, and the underlying mechanism of its function in CNS inflammation. To directly address the role of CD26/DP IV in vivo, we examined Th1 immune responses and susceptibility to experimental autoimmune encephalomyelitis in CD26(-/-) mice. We show that gene deletion of CD26 in mice leads to deregulation of Th1 immune responses. Although production of IFN-gamma and TNF-alpha by pathogenic T cells in response to myelin Ag was enhanced in CD26(-/-) mice, production of the immunosuppressive cytokine TGF-beta1 was diminished in vivo and in vitro. In contrast to the reduction in TGF-beta1 production, responsiveness to external TGF-beta1 was normal in T cells from CD26(-/-) mice, excluding alterations in TGF-beta1 sensitivity as a mechanism causing the loss of immune regulation. Natural ligands of CD26/DP IV induced TGF-beta1 production in T cells from wild-type mice. However, natural ligands of CD26/DP IV failed to elicit TGF-beta1 production in T cells from CD26(-/-) mice. The striking functional deregulation of Th1 immunity was also seen in vivo. Thus, clinical experimental autoimmune encephalomyelitis scores were significantly increased in CD26(-/-) mice immunized with peptide from myelin oligodendrocyte glycoprotein. These results identify CD26/DP IV as a nonredundant inhibitory receptor controlling T cell activation and Th1-mediated autoimmunity, and may have important therapeutic implications for the treatment of autoimmune CNS disease.  相似文献   

16.
NMDA受体与中枢神经系统发育   总被引:9,自引:0,他引:9  
中枢神经系统兴奋性氨基酸离子型受体-NMDA受体,是由NMDAR1和NMDAR2两个亚单位共同构成的受体通道复合体。NMDA受本激活后可引起神经元细胞对Na^+,K^+和Ca^2+通透性增强,产生兴奋性突触后电位,在中枢神经发育的过程中,NMDA受体通过不同亚型的选择性表达,改变自身的结构和功能,进而影响NMDA受体介导的Ca^2+内流,调节神经元内Ca^2+依赖的第二信使系统,最终实现对中枢神经  相似文献   

17.
Incidence rates for central nervous system (CNS) malformations in infants born to residents of Kanawha County, West Virginia, 1970-1974, were significantly higher than comparable United States rates during those years. Since Kanawha County contains a polyvinyl chloride (PVC) polymerization plant, a case-control study was conducted on the possible relationship between the occurrence of CNS defects and parental occupational or residential exposure to vinyl chloride monomer emissions from this plant. No relationship with parental occupation was found. While a tendency was noted for residences of case families to be located in an area northeast of the plant, this observation did not entirely correlate with existing data on local patterns of wind direction and air pollution.  相似文献   

18.
We have recently developed a reconstitution assay which allows the rapid determination of sodium- and chloride-dependent glycine transport activity of many fractions (López-Corcuera, B., and Aragón, C. (1989) Eur. J. Biochem. 181, 519-524). In this paper we report the purification of the sodium- and chloride-coupled glycine transporter from pig brain stem. Transporter is solubilized from plasma membrane vesicles with 2% cholate and purified by sequential chromatography on phenyl-Sepharose, wheat germ agglutinin-Sepharose, and hydroxylapatite columns, followed by a 5-20% sucrose density gradient fractionation. Taking into account the inactivation suffered by the transporter, a final increase in specific activity of about 450-fold is achieved. Although two polypeptides with apparent molecular masses of 100 and 37 kDa are progressively enriched during the chromatographic steps, only the 100-kDa band comigrates with transport activity along the density gradient. This band is finally isolated to apparent homogeneity in the active fractions. We conclude that the 100-kDa band represents the glycine transporter. Finally, the pure transporter can be reconstituted into liposomes, retaining the absolute dependence on sodium and chloride gradients, the electrogenicity, the glycine affinity, the substrate specificity, and the sensitivity to group-selective modifiers characteristic of the native transporter.  相似文献   

19.
The radioresponse of the central nervous system: a dynamic process   总被引:27,自引:0,他引:27  
Radiation continues to be a major treatment modality for tumors located within and close to the central nervous system (CNS). Consequently, alleviating or protecting against radiation-induced CNS injury would be of benefit in cancer treatment. However, the rational development of such interventional strategies will depend on a more complete understand-ing of the mechanisms responsible for the development of this form of normal tissue injury. Whereas the vasculature and the oligodendrocyte lineage have traditionally been considered the primary radiation targets in the CNS, in this review we suggest that other phenotypes as well as critical cellular interactions may also be involved in determining the radio-response of the CNS. Furthermore, based on the assumption that the CNS has a limited repertoire of responses to injury, the reaction of the CNS to other types of insults is used as a framework for modeling the pathogenesis of radiation-induced damage. Evidence is then provided suggesting that, in addition to acute cell death, radiation induces an intrinsic recovery/repair response in the form of specific cytokines and may  相似文献   

20.
Evidence from electrophysiology and biochemistry supports the hypothesis that the ion channel of the nicotinic acetylcholine receptor is formed by homologous amino acid sequences of all receptor subunits, called helices M2. A model of the ion channel is proposed and the selectivity filter is described as a ring of negatively-charged amino acid side chains [(1988) Nature 335, 645-648] which may undergo conformational changes upon permeation of the cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号