共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of Lbx1 in migration of muscle precursor cells 总被引:9,自引:0,他引:9
The homeobox gene Lbx1 is expressed in migrating hypaxial muscle precursor cells during development. These precursors delaminate from the lateral edge of the dermomyotome and form distinct streams that migrate over large distances, using characteristic paths. The targets of migration are limbs, septum transversum and the floor of the first branchial arch where the cells form skeletal muscle of limbs and shoulders, diaphragm and hypoglossal cord, respectively. We used gene targeting to analyse the function of Lbx1 in the mouse. Myogenic precursor cells delaminate from the dermomyotome in Lbx1 mutants, but migrate in an aberrant manner. Most critically affected are migrating cells that move to the limbs. Precursor cells that reach the dorsal limb field are absent. In the ventral limb, precursors are present but distributed in an abnormal manner. As a consequence, at birth some muscles in the forelimbs are completely lacking (extensor muscles) or reduced in size (flexor muscles). Hindlimb muscles are affected strongly, and distal limb muscles are more affected than proximal ones. Other migrating precursor cells heading towards the floor of the first branchial arch move along the appropriate path in Lbx1 mutants. However, these cells migrate less efficiently and reduced numbers of precursors reach their distal target. At birth, the internal lingual muscle is therefore reduced in size. We suggest that Lbx1 controls the expression of genes that are essential for the recognition or interpretation of cues that guide migrating muscle precursors and maintain their migratory potential. 相似文献
2.
3.
Evidence for a novel Notch pathway required for muscle precursor selection in Drosophila. 总被引:1,自引:0,他引:1
The Notch pathway mediates cell fate choice in many species and developmental contexts. In the Drosophila mesoderm, phenotypic differences were observed when different components of the pathway were defective. To determine if these differences reflect variations in the signaling pathway or in the persistence of wild-type maternal products, we examined muscle precursors in embryos that lacked both maternally- and zygotically-derived gene products, called holonull embryos. Most holonull neurogenic embryos have the same number and arrangement of extra muscle precursors, but in Notch holonull embryos many additional cells also become muscle precursors. Thus Notch is active in cells where its known ligands and downstream effectors are not. These results indicate that Notch acts in two pathways to determine cell fates in mesoderm: the Delta-to-Notch-to-Suppressor of Hairless-to-Enhancer of split signaling pathway previously defined, and a second pathway that acts independently. 相似文献
4.
Netrin1 is required for neural and glial precursor migrations into the olfactory bulb 总被引:1,自引:0,他引:1
Netrin1 (NTN1) deficiency in mouse brain causes defects in axon guidance and cell migration during embryonic development. Here we show that NTN1 is required for olfactory bulb (OB) development at late embryogenesis and at early postnatal stages to facilitate the accumulation of proper numbers of granular and glomerular neuron subtypes and oligodendrocytes into the OB. In addition to the analysis of Ntn1−/− mice we made tissue and neurosphere cultures to clarify the role of NTN1 in the anterior forebrain. We propose that a subset of neural progenitors/precursors requires NTN1 to efficiently enter the rostral migratory stream to migrate into the OB. The analysis of postnatal Ntn1−/− OBs revealed a reduction of specific types of interneurons which have been shown to originate from particular subregions of the lateral ventricle walls. Based on Ntn1 expression in ventral parts of the ventricle walls, we observed a decrease in the mainly ventrally derived type II interneurons that express calcium-binding proteins calretinin and calbindin. Instead, no change in the numbers of dorsally derived tyrosine hydroxylase expressing interneurons was detected. In addition to the specific reduction of type II interneurons, our results indicate that NTN1 is required for oligodendroglial migration into the OB. Furthermore, we characterised the Ntn1 expressing subpopulation of neurosphere-forming cells from embryonic and adult brain as multipotent and self-renewing. However, NTN1 is dispensable for the proliferation of neurosphere forming progenitor cells and for their differentiation. 相似文献
5.
6.
Migration of vascular smooth muscle cells (VSMC) is a crucial event in the formation of vascular stenotic lesions. Tumor necrosis factor-alpha (TNF-alpha) is elaborated by VSMC in atherosclerosis and following angioplasty. We investigated the role of nuclear factor-kappaB (NF-kappaB) in human VSMC migration induced by TNF-alpha. Adenoviral expression of a mutant form of the inhibitor of NF-kappaB, IkappaB-alphaM, suppressed TNF-alpha-triggered degradation of cellular IkappaB-alpha, inhibited activation of NF-kappaB, and attenuated TNF-alpha-induced migration. Further, IkappaB-alphaM suppressed TNF-alpha-stimulated release of interleukin-6 and -8 (IL-6 and IL-8). Neutralization of IL-6 and IL-8 with appropriate antibodies reduced TNF-alpha-induced VSMC migration. Addition of recombinant IL-6 and IL-8 stimulated migration. Collectively, our data provide initial evidence that TNF-alpha-mediated VSMC migration requires NF-kappaB activation and is associated with induction of IL-6 and IL-8 which act in an autocrine manner. 相似文献
7.
The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development 总被引:5,自引:0,他引:5 下载免费PDF全文
Lee CT Li L Takamoto N Martin JF Demayo FJ Tsai MJ Tsai SY 《Molecular and cellular biology》2004,24(24):10835-10843
The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs. 相似文献
8.
In most eukaryotic organisms, cytochrome c(1) is encoded in the nucleus, translated on cytosolic ribosomes, and directed to its final destination in the mitochondrial inner membrane by a bipartite, cleaved, amino-terminal presequence. However, in the kinetoplastids and euglenoids, the cytochrome c(1) protein has been shown to lack a cleaved presequence; a single methionine is removed from the amino terminus upon maturation, and the sequence upstream of the heme-binding site is generally shorter than that of the other eukaryotic homologs. We have used a newly developed mitochondrial protein import assay system from Trypanosoma brucei to demonstrate that the T. brucei cytochrome c(1) protein is imported along a non-conservative pathway similar to that described for the inner membrane carrier proteins of other organisms. This pathway requires external ATP and an external protein receptor but is not absolutely dependent on a membrane potential or on ATP hydrolysis in the mitochondrial matrix. We propose the cytochrome c(1) import in T. brucei is a two-step process first involving a membrane potential independent translocation across the outer mitochondrial membrane followed by heme attachment and a membrane potential-dependent insertion into the inner membrane. 相似文献
9.
Castillo-Lluva S Tatham MH Jones RC Jaffray EG Edmondson RD Hay RT Malliri A 《Nature cell biology》2010,12(11):1078-1085
The Rho-like GTPase, Rac1, induces cytoskeletal rearrangements required for cell migration. Rac activation is regulated through a number of mechanisms, including control of nucleotide exchange and hydrolysis, regulation of subcellular localization or modulation of protein-expression levels. Here, we identify that the small ubiquitin-like modifier (SUMO) E3-ligase, PIAS3, interacts with Rac1 and is required for increased Rac activation and optimal cell migration in response to hepatocyte growth factor (HGF) signalling. We demonstrate that Rac1 can be conjugated to SUMO-1 in response to hepatocyte growth factor treatment and that SUMOylation is enhanced by PIAS3. Furthermore, we identify non-consensus sites within the polybasic region of Rac1 as the main location for SUMO conjugation. We demonstrate that PIAS3-mediated SUMOylation of Rac1 controls the levels of Rac1-GTP and the ability of Rac1 to stimulate lamellipodia, cell migration and invasion. The finding that a Ras superfamily member can be SUMOylated provides an insight into the regulation of these critical mediators of cell behaviour. Our data reveal a role for SUMO in the regulation of cell migration and invasion. 相似文献
10.
11.
12.
Murphy DA Diaz B Bromann PA Tsai JH Kawakami Y Maurer J Stewart RA Izpisúa-Belmonte JC Courtneidge SA 《PloS one》2011,6(7):e22499
In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis. 相似文献
13.
14.
Céline Contesto Sandrine Milesi Sophie Mantelin Anouk Zancarini Guilhem Desbrosses Fabrice Varoquaux Catherine Bellini Mariusz Kowalczyk Bruno Touraine 《Planta》2010,232(6):1455-1470
Plant root development is highly responsive both to changes in nitrate availability and beneficial microorganisms in the rhizosphere.
We previously showed that Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacteria strain isolated from rapeseed roots, alleviates the inhibition exerted by
high nitrate supply on lateral root growth. Since soil-borne bacteria can produce IAA and since this plant hormone may be
implicated in the high nitrate-dependent control of lateral root development, we investigated its role in the root development
response of Arabidopsis thaliana to STM196. Inoculation with STM196 resulted in a 50% increase of lateral root growth in Arabidopsis wild-type seedlings.
This effect was completely abolished in aux1 and axr1 mutants, altered in IAA transport and signaling, respectively, indicating that these pathways are required. The STM196 strain,
however, appeared to be a very low IAA producer when compared with the high-IAA-producing Azospirillum brasilense sp245 strain and its low-IAA-producing ipdc mutant. Consistent with the hypothesis that STM196 does not release significant amounts of IAA to the host roots, inoculation
with this strain failed to increase root IAA content. Inoculation with STM196 led to increased expression levels of several
IAA biosynthesis genes in shoots, increased Trp concentration in shoots, and increased auxin-dependent GUS staining in the
root apices of DR5::GUS transgenic plants. All together, our results suggest that STM196 inoculation triggers changes in IAA distribution and homeostasis
independently from IAA release by the bacteria. 相似文献
15.
In vertebrates, hyaluronan biosynthesis is regulated by three transmembrane catalytic enzymes denoted Has1, Has2 and Has3. We have previously cloned the Xenopus orthologues of the corresponding genes and defined their spatiotemporal distribution during development. During mammalian embryogenesis, Has2 activity is known to be crucial, as its abrogation in mice leads to early embryonic lethality. Here, we show that, in Xenopus, morpholino-mediated loss-of-function of XHas2 alters somitogenesis by causing a disruption of the metameric somitic pattern and leads to a defective myogenesis. In the absence of XHas2, early myoblasts underwent apoptosis, failing to complete their muscle differentiation programme. XHas2 activity is also required for migration of hypaxial muscle cells and trunk neural crest cells (NCC). To approach the mechanism whereby loss of HA, following XHas2 knockdown, could influence somitogenesis and precursor cell migration, we cloned the orthologue of the primary HA signalling receptor CD44 and addressed its function through an analogous knockdown approach. Loss of XCD44 did not disturb somitogenesis, but strongly impaired hypaxial muscle precursor cell migration and the subsequent formation of the ventral body wall musculature. In contrast to XHas2, loss of function of XCD44 did not seem to be essential for trunk NCC migration, suggesting that the HA dependence of NCC movement was rather associated with an altered macromolecular composition of the ECM structuring the cells' migratory pathways. The presented results, extend our knowledge on Has2 function and, for the first time, demonstrate a developmental role for CD44 in vertebrates. On the whole, these data underlie and confirm the emerging importance of cell-ECM interactions and modulation during embryonic development. 相似文献
16.
Raghavan S Williams I Aslam H Thomas D Szöor B Morgan G Gross S Turner J Fernandes J VijayRaghavan K Alphey L 《Current biology : CB》2000,10(5):269-272
Type 1 serine/threonine protein phosphatases (PP1) are important regulators of many cellular and developmental processes, including glycogen metabolism, muscle contraction, and the cell cycle [1] [2] [3] [4] [5]. Drosophila and humans both have multiple genes encoding PP1 isoforms [3] [6] [7]; each has one beta and several alpha isoform genes (alpha(1), alpha(2), alpha(3) in flies, alpha and gamma in humans; mammalian PP1beta is also known as PP1delta). The alpha/beta subtype differences are highly conserved between flies and mammals [6]. Though all these proteins are >85% identical to each other and have indistinguishable activities in vitro, we show here that the Drosophila beta isoform has a distinct biological role. We show that PP1beta9C corresponds to flapwing (flw), previously identified mutants of which are viable but flightless because of defects in indirect flight muscles (IFMs) [8]. We have isolated a new, semi-lethal flw allele that shows a range of defects, especially in muscles, which break away from their attachment sites and degenerate. 相似文献
17.
He-Yen Chou Yu-Hung Lin Guan-Lin Shiu Hsiang-Yu Tang Mei-Ling Cheng Ming-Shi Shiao Li-Mei Pai 《Journal of biomedical science》2014,21(1):64
Background
Methionine, an essential amino acid, is required for protein synthesis and normal cell metabolism. The transmethylation pathway and methionine salvage pathway (MTA cycle) are two major pathways regulating methionine metabolism. Recently, methionine has been reported to play a key role in Drosophila fecundity.Results
Here, we revealed that the MTA cycle plays a crucial role in Drosophila fecundity using the mutant of aci-reductone dioxygenase 1 (DADI1), an enzyme in the MTA cycle. In dietary restriction condition, the egg production of adi1 mutant flies was reduced compared to that of control flies. This fecundity defect in mutant flies was rescued by reintroduction of Dadi1 gene. Moreover, a functional homolog of human ADI1 also recovered the reproduction defect, in which the enzymatic activity of human ADI1 is required for normal fecundity. Importantly, methionine supply rescued the fecundity defect in Dadi1 mutant flies. The detailed analysis of Dadi1 mutant ovaries revealed a dramatic change in the levels of methionine metabolism. In addition, we found that three compounds namely, methionine, SAM and Methionine sulfoxide, respectively, may be required for normal fecundity.Conclusions
In summary, these results suggest that ADI1, an MTA cycle enzyme, affects fly fecundity through the regulation of methionine metabolism. 相似文献18.
19.
20.
Bakkers J Kramer C Pothof J Quaedvlieg NE Spaink HP Hammerschmidt M 《Development (Cambridge, England)》2004,131(3):525-537
The large extracellular polysaccharide Hyaluronan (HA) and its synthesizing enzymes (Has) have been implicated in regulating the migratory potential of metastatic cancer cells. Here, we analyze the roles of zebrafish Has2 in normal development. Antisense morpholino oligonucleotide (MO)-mediated knockdown of zebrafish Has2 leads to the loss of HA, and severe migratory defects during gastrulation, somite morphogenesis and primordial germ cell migration. During gastrulation, ventrolateral cells of has2 morphant embryos fail to develop lamellipodia and to migrate dorsally, resulting in a blockage of dorsal convergence, whereas extension of the dorsal axis is normal. The effect is cell autonomous, suggesting that HA acts as an autocrine signal to stimulate the migration of HA-generating cells. Upon ectopic expression in axial cells, has2 causes the formation of supernumerary lamellipodia and a blockage of axis extension. Epistasis analyses with constitutively active and dominant-negative versions of the small GTPase Rac1 suggest that HA acts by Rac1 activation, rather than as an essential structural component of the extracellular matrix. Together, our data provide evidence that convergence and extension are separate morphogenetic movements of gastrulation. In addition, they suggest that the same HA pathways are active to auto-stimulate cell migration during tumor invasion and vertebrate embryogenesis. 相似文献