首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用α-型酿酒酵母(Saccharomyces cerevisiae)表面展示系统的载体,将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,插入到酿酒酵母蔗糖酶信号肽序列与α-凝集素的C端编码序列之间,形成融合表达框,构建重组质粒pSY-xy222,转化酿酒酵母H158。含重组质粒的菌株H158-SXI木糖异构酶活性测定表明,细胞壁上酶活测定值为1.53 U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。木糖葡萄糖共发酵结果显示,重组菌株木糖利用率较出发菌株提高了17.8%。  相似文献   

2.
嗜热细菌木糖异构酶基因xylA在酿酒酵母中的高效表达   总被引:20,自引:2,他引:20  
采用PCR技术克隆得到嗜热细菌Clostridium thermohydrosulfuricum木糖异构酶(xylose isomerase XI)基因xylA,将该基因连接于酵母表达载体pMA91的磷酸甘油激酶(PGK)启动子下,得到重组质粒pBX1。通过LiAc完整细胞转化法将重组质粒转移至酿酒酵母(Saccharomyces cerevisiae)H158受体菌中,得到重组酵母转化子H612,酶活测定结果表明,成功地在酿酒酵母中得到木糖异构酶的活性表达。SDSPAGE电泳结果显示出明显的特异性表达产物带,单体分子量为43kD。由酿酒酵母重组子H612产生的木糖异构酶最高酶活条件与其在自然状态下的一致,均为85℃,pH70,在这一条件下酶的比活力为10U/mg蛋白,而在接近酵母最适生长温度的30℃和40℃时,其相对酶活分别下降37%和11%。研究结果显示在酿酒酵母中得到木糖异构酶的活性表达,为进一步在酿酒酵母菌中建立新的木糖代谢途径打下了基础。  相似文献   

3.
取云南腾冲温泉水样在以木糖为唯一碳源的平板上进行培养,分离纯化得到11 株可以代谢木糖的菌株,分别进行液体摇床培养,并以半胱氨酸-咔唑法测定木糖异构酶活性,筛选得到一株产木糖异构酶活性较高的菌株RD-1,经形态学及16S rRNA 鉴定命名为Anoxybacillus .avithermus WL,该菌在24h 时显示最高酶活6.4 U/mL.  相似文献   

4.
为了使酿酒酵母较好地利用木糖产生乙醇,将来自Thermus thermophilus的木糖异构酶基因XYLA和酿酒酵母自身的木酮糖激酶基因XKS1,构建到酵母表达载体pESC-LEU中,导入酿酒酵母YPH499中,同时成功表达了两种酶基因。该菌以木糖为唯一碳源进行限氧发酵,木糖的利用率为9.64%,为宿主菌的4.17倍,产生2.22 mmol.L-1的乙醇。同时初步探讨了两种酶基因的表达量对酿酒酵母发酵木糖生成乙醇的影响。木糖异构酶对木糖的利用起关键性的作用,木酮糖激酶的过量表达不利于乙醇生成。  相似文献   

5.
木糖异构酶的结构及蛋白质工程   总被引:2,自引:0,他引:2  
  相似文献   

6.
目的:应用P. pastoris的pAOX1表达系统分泌表达重组木糖异构酶.方法:用PCR法从大肠杆菌基因组中扩增木糖异构酶基因(xi).用EcoRⅠ和NotⅠ双酶切将其基因克隆进P. pastoris表达载体.通过电转法将其木糖异构酶基因重组于P. pastoris基因组,筛选G418抗性700μg/ml的重组子作为工程菌GS115(pPIC9K-xi).在摇瓶中发酵用甲醇诱导表达重组木糖异构酶.用SDS-PAGE分析重组蛋白的表达情况,用糖酵解法对表达产物进行活性分析.结果:木糖异构酶基因在pAOX1的调控下,在P. pastoris中经甲醇诱导能分泌表达,摇瓶发酵2d表达量为35mg/L,表达产物具有代谢木糖的作用.结论:成功地克隆了大肠杆菌的木糖异构酶基因,并实现用pAOX1系统在P. pastoris中表达中木糖异构酶,为用P. pastoris规模化生产重组木糖异构酶奠定了基础.  相似文献   

7.
由于对全球变暖等日益严重的环境问题的担忧,生产生物乙醇等清洁能源的技术正受到世界各国越来越多的关注。较之以粮食为原料生产乙醇,木质纤维素生产生物乙醇具有更大的发展潜力,因其来源广泛,廉价且可再生。以木质纤维素生产生物乙醇已经取得长足进步,但仍面临几个主要问题,比如天然酿酒酵母不能利用木糖发酵乙醇,木质纤维素酶成本过高,木质纤维素预处理环节成本高等。已经有基因改造的酵母菌株可以利用戊糖和己糖进行生物乙醇生产。然而,这些菌株对木糖的利用效率很低。这主要是因为酿酒酵母缺乏高效的特异性木糖转运基因,木糖运输依赖已糖转运基因。为了提高木糖利用速度,已有不少方法成功应用于构建重组酵母细胞。现对酵母木糖转运基因的最新研究进展进行简要概述。  相似文献   

8.
以木糖异构酶基因为筛选标记的玉米遗传转化   总被引:1,自引:0,他引:1  
利用木糖异构酶基因作为筛选标记可以在含有不同浓度木糖的培养基上筛选出玉米再生植株,其中50%-100%木糖浓度的总体筛选效果较好,但不同玉米基因型之间筛选的最佳浓度差异很大。通过DNA点杂交、PCR及PCR.Southern印记法检测表明,木糖异构酶基因已经整合到转基因植株中。以木糖作为筛选剂,可以减小潜在的生物安全隐患。  相似文献   

9.
天然球蛋白分子表面暴露的柔性的环是对蛋白质水解作用最敏感的部位,可用蛋白质部分水解来确定木糖异构酶突变体上的这些部位,枯草杆菌蛋白酶对W136E单体的水解在一级反应图上呈折线,对T89S和V1341单体的部分水解为直线。对镁-酶的水解速度低于对脱辅基酶的水解速度。枯草杆菌蛋白酶对W136E的第一个水解位点在Ala28,Thr29之间,第二个水解位点在肽链的C端。  相似文献   

10.
纯化了ArthrobacterD-木糖异构酶的三个突变体,T89S,V134I的比尖(U/mg)分别为3.42和6.18,W136E没有生。T89S和V134I的活性需要二价阳离子,对于T89S,Mg^2^+的作用强于Co^2^+。在以木糖为底物时,T89S的Km值为49.8mmol/L,V134I的Km值为9.8mmol/L,在以果糖为底物时,木糖醇对T89S是竞争性抑制剂,山梨糖醇对T89S和  相似文献   

11.
Xylose isomerase (XI) is a key enzyme in the conversion of d ‐xylose, which is a major component of lignocellulosic biomass, to d ‐xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI‐related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell‐surface display system, and the xylose assimilation and fermentation properties of this XI‐displaying yeast were examined. XI‐displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 346–351, 2013  相似文献   

12.
Xylose isomerase (XylC) from Clostridium cellulovorans can simultaneously perform isomerization and fermentation of d ‐xylose, the main component of lignocellulosic biomass, and is an attractive candidate enzyme. In this study, we optimized a specified metal cation in a previously established Saccharomyces cerevisiae strain displaying XylC. We investigated the effect of each metal cation on the catalytic function of the XylC‐displaying S. cerevisiae. Results showed that the divalent cobalt cations (Co2+) especially enhanced the activity by 46‐fold. Co2+ also contributed to d ‐xylose fermentation, which resulted in improving ethanol yields and xylose consumption rates by 6.0‐ and 2.7‐fold, respectively. Utility of the extracellular xylose isomerization system was exhibited in the presence of mixed sugar. XylC‐displaying yeast showed the faster d ‐xylose uptake than the yeast producing XI intracellularly. Furthermore, direct xylan saccharification and fermentation was performed by unique yeast co‐culture system. A xylan‐degrading yeast strain was established by displaying two kinds of xylanases; endo‐1,4‐β‐xylanase (Xyn11B) from Saccharophagus degradans, and β‐xylosidase (XlnD) from Aspergillus niger. The yeast co‐culture system enabled fine‐tuning of the initial ratios of the displayed enzymes (Xyn11B:XlnD:XylC) by adjusting the inoculation ratios of Xylanases (Xyn11B and XlnD)‐displaying yeast and XylC‐displaying yeast. When the enzymes were inoculated at the ratio of 1:1:2 (1.39 × 1013: 1.39 × 1013: 2.78 × 1013 molecules), 6.0 g/L ethanol was produced from xylan. Thus, the cofactor optimization and the yeast co‐culture system developed in this study could expand the prospect of biofuels production from lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1068–1076, 2017  相似文献   

13.
The current climate crisis demands replacement of fossil energy sources with sustainable alternatives. In this scenario, second-generation bioethanol, a product of lignocellulosic biomass fermentation, represents a more sustainable alternative. However, Saccharomyces cerevisiae cannot metabolize pentoses, such as xylose, present as a major component of lignocellulosic biomass. Xylose isomerase (XI) is an enzyme that allows xylose consumption by yeasts, because it converts xylose into xylulose, which is further converted to ethanol by the pentose-phosphate pathway. Only a few XI were successfully expressed in S. cerevisiae strains. This work presents a new bacterial XI, named GR-XI 1, obtained from a Brazilian goat rumen metagenomic library. Phylogenetic analysis confirmed the bacterial origin of the gene, which is related to Firmicutes XIs. After codon optimization, this enzyme, renamed XySC1, was functionally expressed in S. cerevisiae, allowing growth in media with xylose as sole carbon source. Overexpression of XySC1 in S. cerevisiae allowed the recombinant strain to efficiently consume and metabolize xylose under aerobic conditions.  相似文献   

14.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

15.
The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol. To improve characteristics of xylose fermentation, the recombinant strain Delta xyl1 Delta xyl2-ADelta xyl2-B, with deletions of genes encoding first enzymes of xylose utilization (NAD(P)H-dependent xylose reductase and NAD-dependent xylitol dehydrogenases, respectively), was constructed and used as a recipient for co-overexpression of the Escherichia coli xylA gene coding for xylose isomerase and endogenous XYL3 gene coding for xylulokinase. The expression of both genes was driven by the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase promoter. Xylose isomerase activities of obtained transformants amounted to approximately 80% of that of the bacterial host strain. Xylulokinase activities of the transformants increased twofold when compared with the parental strain. The recombinant strains displayed improved ethanol production during the fermentation of xylose.  相似文献   

16.
Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose–xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L−1 acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L−1) in all cultures. Xylose fermentation in acetic –acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.  相似文献   

17.
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration.  相似文献   

18.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.  相似文献   

19.
The crystal structures of Streptomyces diastaticus No. 7 strain M1033 xylose isomerase (SDXyI) have been analysed and refined at 0.19nm. The crystal space group is I222, with unit cell dimensions of a=9.884 ran, b=9.393nm and c=8.798nm. Based on the coordinates of the Streptomyces rubiginosus xylose isomerase (SRXyI), the initial model of SDXyl was built up by the dose packing analysing and R-factor searching and refined by PROLSQ to a final R-factor of 0.177 with the rms deviations of bond lengths and bond angles of 0.001 9nm and 2.1°, respectively. No significant global conformation change existed between SRXyI and SDXyI except the local conformation in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号