首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel chitinase was detected in extracellular culture fluids of the entomopathogenic fungus Metarhizium anisopliae (ATCC 20500) grown in liquid medium containing chitin as a sole carbon source. A chitinase was purified to near homogeneity from culture broth of M. anisopliae by DEAE-Sephacel, CM-Sepharose CL-6B ion-exchange chromatography, and gel filtration with Superose 12HR. The molecular mass of the enzyme determined by SDS-polyacrylamide gel electrophoresis was approximately 60 kDa and the optimum pH of the enzyme was 5.0. This molecular mass is different from values of 33, 43.5, and 45 kDa for endochitinases and 110 kDa for an exochitinase (N-acetylglucosaminidase) from M. anisopliae ME-1 published previously. In addition, N-terminal sequences of 60-kDa chitinase are different from those of 43.4- and 45-kDa endochitinases. The purified enzyme showed high chitinolytic activity against colloidal, crystalline chitin of crab shells as well as against p-nitrophenyl-beta-d-N-acetylglucosamide, p-nitrophenyl-beta-d-N, N'-diacetylchitobiose, and p-nitrophenyl-N, N'-N"-triacetylchitotriose, indicating that this enzyme has both endo- and exochitinase activity.  相似文献   

2.
Abstract A modified Chelex 100 ion-exchange extraction method was used to monitor streptomycete spores, streptomycete mycelia and Salmonella in soil. Salmonella dusseldorf in soil was inhibited by the bactericidal effect of streptomycin and by the growth of Streptomyces bikiniensis . The soil used in the experiments exerted an antimicrobial effect on S. dusseldorf .
Competition between S. dusseldorf, Streptomyces lividans TK24 and Stm. bikiniensis ATCC 11062 was monitored in soil. In sterile amended soil Stm. lividans increased the survival of S. dusseldorf , whereas survival was reduced in the presence of the known streptomycin producer, Stm. bikiniensis . In the presence of S. dusseldorf the production of spores and mycelia by Stm. bikiniensis was reduced, and Stm. lividans sporulation was reduced but mycelia production increased. Evidence was seen for a beneficial effect between S. dusseldorf and Stm. lividans mycelia.
In non-sterile unamended soil the survival of S. dusseldorf was increased in the presence of Stm. lividans , whereas Stm. bikiniensis had no effect. Stm. lividans and Stm. bikiniensis reduced the survival of S. dusseldorf in non-sterile amended soil, with the most dramatic reduction caused by Stm. bikiniensis . No such changes in the survival of S. dusseldorf were observed with non-sterile amended soil that had been treated with sludge. The presence of sludge in unamended soil increased the rate of Salmonella die-off. In unamended soil containing sludge the presence of Stm. lividans increased the survival of S. dusseldorf , whereas survival was reduced in the presence of Stm. bikiniensis . The data provided evidence of antibiosis in soil, relating to the possible production of streptomycin by Stm. bikiniensis .  相似文献   

3.
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using lambda DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a lambda DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.  相似文献   

4.
Among more than a hundred colonies of fungi isolated from soil samples, DY-52 has been screened as an extracellular chitin deacetylase (CDA) producer. The isolate was further identified as Mortierella sp., based on the morphological properties and the nucleotide sequence of its 18S rRNA gene. The fungus exhibited maximal growth in yeast peptone glucose (YPD) liquid medium containing 2% of glucose at pH 5.0 and 28 degrees C with 150 rpm. The CDA activity of DY-52 was maximal (20 U/mg) on the 3rd day of culture in the same medium. The CDA was inducible by addition of glucose and chitin. The enzyme contained two isoforms of molecular mass 50 kDa and 59 kDa. This enzyme showed a maximal activity at pH 5.5 and 60 degrees C. In addition, it had a pH stability range of 4.5-8.0 and a temperature stability range of 4-40 degrees C. The enzyme was enhanced in the presence of Co2+ and Ca2+. Among various substrates tested, WSCT-50 (water-soluble chitin, degree of deacetylation 50%), glycol chitin, and crab chitosan (DD 71-88%) were deacetylated. Moreover, the CDA can handle N-acetylglucosamine oligomers (GlcNAc)2-7.  相似文献   

5.
When Streptomyces thermoviolaceus OPC-520 was grown in a minimal medium with 1% chitin, three activity bands corresponding to proteins of 40 kDa (Chi40), 30 kDa (Chi30), and 25 kDa (Chi25) were detected. Among them, Chi30 was purified from the culture filtrate of the strain. The molecular mass was estimated to be 30 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its isoelectric point was 3.8. The optimum pH and temperature of Chi30 were 4.0 and 60 degrees C, respectively. Chi30 was stable at pH 6-8 up to 60 degrees C. The gene encoding Chi30 (chi30) was cloned and its nucleotides sequenced. The open reading frame of chi30 encoded a protein consisting of 347 amino acids with a calculated molecular weight of 35,621. The mature Chi30 consisted of only a catalytic domain and showed a significant similarity with ChiA from S. coelicolor and ChiA from S. lividans. The existence of a 12-bp direct repeat sequence in the promoter region of chi30 was detected, which have been suggested to be involved in both chitin induction and glucose repression.  相似文献   

6.
Characterization and sequence of a Thermomonospora fusca xylanase.   总被引:7,自引:2,他引:5       下载免费PDF全文
TfxA is a thermostable xylanase produced by the thermophilic soil bacterium Thermomonospora fusca. The enzyme was purified to homogeneity from the culture supernatant of Streptomyces lividans transformed by plasmid pGG92, which carries the gene for TfxA, xynA. The molecular mass of TfxA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 32 kDa. TfxA is extremely stable, retaining 96% of its activity after 18 h at 75 degrees C. It has a broad pH optimum around pH 7 and retains 80% of its maximum activity between pH 5 and 9. The native enzyme binds strongly to both cellulose and insoluble xylan even though it has no activity on cellulose. Treatment of TfxA with a T. fusca protease produced a 24-kDa catalytically active fragment that had the same N-terminal sequence as TfxA. The fragment does not bind to cellulose and binds weakly to xylan. The Vmax values for TfxA and the fragment are 600 and 540 mumol/min/mg, respectively, while the Kms are 1.1 and 2.3 mg of xylan per ml, respectively. The DNA sequence of the xynA gene was determined, and it contains an open reading frame that codes for a 42-amino-acid (42-aa) actinomycete signal peptide followed by the 32-kDa mature protein. There is a 21-aa Gly-Pro-rich region that separates the catalytic domain from an 86-aa C-terminal binding domain. The amino acid sequence of the catalytic domain of TfxA has from 40 to 72% identity with the sequence of 12 other xylanases from seven different organisms and belongs to family G.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Streptomyces lividans grown at 45 degrees C produces a GroEL-like chaperonin. This protein is specifically synthesized in bacterial cell cultures upon heat shock induction. It has a similar size (62 kDa) to the GroEL-like proteins from Escherichia coli and Bacillus subtilus and shows immunological cross-reaction with serum raised against GroEL from E. coli. The S. lividans 62-kDa protein assembles into oligomers around 20S that show a morphology consistent with a barrel showing six-fold and seven-fold symmetries as previously described in E. coli and B. subtilis.  相似文献   

8.
The interspecific transfer of two giant linear plasmids was investigated in sterile soil microcosms. Plasmids pRJ3L (322 kb) and pRJ28 (330 kb), both encoding mercury resistance, were successfully transferred in amended soil microcosms from their streptomycete hosts, the isolates CHR3 and CHR28, respectively, to a plasmidless and mercury-sensitive strain, Streptomyces lividans TK24. Transconjugants of S. lividans TK24 were first observed after 2 to 3 days of incubation at 30 degrees C, which corresponded to the time taken for the formation of mycelia in soil. Transfer frequencies were 4.8 x 10(-4) and 3.6 x 10(-5) CFU/donor genome for pRJ3L and pRJ28, respectively. Transconjugants were analyzed by pulsed-field gel electrophoresis for the presence of plasmids, and plasmid identity was confirmed by restriction digests. Total genomic DNA digests confirmed that transconjugants were S. lividans TK24. The mercury resistance genes were shown to be on the plasmid in the transconjugants by hybridization analysis and were still functional. This is the first demonstration of transfer of giant linear plasmids in sterile soil microcosms. Giant linear plasmids were detected in many Streptomyces spp. isolated from mercury-contaminated sediments from Boston Harbor (United States), Townsville Harbor (Australia), and the Sali River (Tucuman, Argentina). Mercury resistance genes were shown to be present on some of these plasmids. Our findings that giant linear plasmids can be transferred between Streptomyces spp. and are common in environmental Streptomyces isolates suggest that these plasmids are important in gene transfer between streptomycetes in the environment.  相似文献   

9.
The chitinase gene (chiA71) from Bacillus thuringiensis subsp. pakistani consists of an open reading frame of 1,905 nucleotides encoding 635 amino acid residues with an estimated molecular mass of 71 kDa. Comparison of the deduced amino acid sequence of the mature enzyme to other microbial chitinases shows a putative catalytic domain and a region with conserved amino acids similar to that of the type III module of fibronectin and a chitin-binding domain. By activity detection of chitinase on SDS-PAGE after renaturation, the molecular mass of protein bands with chitinase activity were 66, 60, 47, and 32 kDa. The N-terminal amino acid sequence of each chitinase activity band was the same (Asp-Ser-Pro-Lys-Gln), suggesting that the 60-, 47-, and 32-kDa chitinases were derived from the 66-kDa chitinase by processing step(s) at the C-terminus. The enzyme was identified as an exochitinase, since it generated N-acetylglucosamine from early stage of colloidal chitin hydrolysis. The crude protein (2.3-18.4 mg/ml), containing chitinase at final activities of 8, 16, 32, and 64 mU/ml, was toxic to Aedes aegypti larvae and caused mortalities of 7.5, 15.0, 51.3, and 70.0% respectively, but the same amount of crude protein from a B. thuringiensis subsp. pakistani mutant lacking chitinase was not toxic.  相似文献   

10.
Three protease mutants--7 (tap-), 12 (tap-, ssp-), and 17 (multiple mutations)--of Streptomyces lividans were tested for their influence on protein secretion. Streptomyces lividans grown in xylan secretes 3 xylanases (A, B, and C). Xylanases A (XlnA) and B (XlnB) are secreted by the Sec pathway, whereas xylanase C (XlnC) is secreted by the Tat pathway. The production of XlnA and XlnC was affected in the mutants, suggesting that the mutations interfered with both Sec- and Tat-secretion systems. However, the processing rate for the Sec and Tat precursor was similar to the wild-type strain, indicating that the mutations had no direct effect on secretion. Streptomyces lividans naturally produced 2 forms of XlnB: XlnB1, which contains the catalytic and the xylan-binding domains, and XlnB2, which contains the catalytic domain only. There was no change from the wild-type strain in the ratio of XlnB1/XlnB2 produced by the mutants, indicating that these proteases are not involved in this process. Although XlnA1, partially truncated in its xylan-binding domain, was rapidly degraded to its catalytic domain (XlnA2) in the wild-type strain, the rate of conversion was reduced in the 3 mutants, indicating that the proteases participated to some extent in this proteolytic process.  相似文献   

11.
Chitinase (EC 3.2.1.14) was isolated from the culture filtrate of Streptomyces sp. M-20 and purified by ammonium sulfate precipitation, DEAE-cellulose ion-exchange chromatography, and Sephadex G-100 gel filtration. No exochitinase activity was found in the culture filtrate. The molecular mass of the purified chitinase was 20 kDa, estimated by a sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 5.0 and at 30 degrees C. The enzyme was stable from pH 4 to 8, and up to 40 degrees C. Among the metals and inhibitors that were tested, the Hg(+), Hg(2+), and p-chloromercuribenzoic acid completely inhibited the enzyme activity. The chitinase activity was high on colloidal chitin, chitotriose, and chitooligosaccharide. The purified chitinase showed antifungal activity against Botrytis cinerea, and lysozyme activity against the cell wall of Botrytis cinerea.  相似文献   

12.
A xylanolytic complex (xylanosome) was isolated from Streptomyces olivaceoviridis E-86 grown on corncob xylan. The isolated xylanosome exhibited a high molecular mass of approximately 3.8 x 10(7) Da (weight average) using size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS), and was composed of at least 8 subunits with a mass range from 12 to 60 kDa. When a SDS-polyacrylamide gel zymogram was examined, the subunits of 47, 35, 32, and 23 kDa were found to have xylanase activity, while the 30-kDa subunit had CMCase activity. According to N-terminal sequence analyses, the 47- and 23-kDa subunits were found to be identical to the two reported xylanases, namely FXYN and GXYN, of S. olivaceoviridis E-86. Both the 35- and 32-kDa subunits were found to be truncated forms of the intact FXYN xylanase that possibly resulted from the degradation by proteases. The 15-kDa subunit consisted solely the xylan-binding domain of the FXYN xylanase. The purified xylanosome appeared to bind partially to xylan and poorly to Avicel.  相似文献   

13.
P Sommer  C Bormann    F Gtz 《Applied microbiology》1997,63(9):3553-3560
Streptomyces cinnamomeus Tü89 secretes a 30-kDa esterase and a 50-kDa lipase. The lipase-encoding gene, lipA, was cloned from genomic DNA into Streptomyces lividans TK23 with plasmid vector pIJ702. Two lipase-positive clones were identified; each recombinant plasmid had a 5.2-kb MboI insert that contained the complete lipA gene. The two plasmids differed in the orientation of the insert and the degree of lipolytic activity produced. The lipA gene was sequenced; lipA encodes a proprotein of 275 amino acids (29,213 Da) with a pI of 5.35. The LipA signal peptide is 30 amino acids long, and the mature lipase sequence is 245 amino acids long (26.2 kDa) and contains six cysteine residues. The conserved catalytic serine residue of LipA is in position 125. Sequence similarity of the mature lipases (29% identity, 60% similarity) was observed mainly in the N-terminal 104 amino acids with the group II Pseudomonas lipases; no similarity to the two Streptomyces lipase sequences was found. lipA was also expressed in Escherichia coli under the control of lacZ promoter. In the presence of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG), growth of the E. coli clone was severely affected, and the cells lysed in liquid medium. Lipase activity in the E. coli clone was found mainly in the pellet fraction. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, three additional protein bands of 50, 29, and 27 kDa were visible. The 27-kDa protein showed lipolytic activity and represents the mature lipase; the 29- and 50-kDa forms showed no activity and very probably represent the unprocessed form and a dimeric misfolded form, respectively. For higher expression of lipA in S. lividans, the gene was cloned next to the strong aphII promoter. In contrast to the lipA-expressing E. coli clone, S. cinnamomeus and the corresponding S. lividans clone secreted only an active protein of 50 kDa. The lipase showed highest activity with C6 and C18 triglycerides; no activity was observed with phospholipids, Tween 20, or p-nitrophenylesters. Upstream of lipA and in the same orientation, an open reading frame, orfA, is found whose deduced protein sequence (519 amino acids) shows similarity to various membrane-localized transporters. Downstream of lipA and in the opposite orientation, an open reading frame, orfB (encoding a 199-amino-acid protein) is found, which shows no conspicuous sequence similarity to known proteins, other than an NAD and flavin adenine dinucleotide binding-site sequence.  相似文献   

14.
The growth and activity of introduced (S. lividans TK24 pIJ673 and S.lividans TK23) and indigenous (S.griseus CAG17) streptomycete strains in soil was studied, under controlled conditions. The effect of environmental parameters such as temperature, soil water content and nutrient availability on the growth and activity of these strains, was studied using a highly dynamic fed-batch soil microcosm system. Using this new system, repeated cycles of active streptomycete growth were achieved, allowing long-term investigation of metabolic activity, plasmid stability and conjugative plasmid transfer. In long-term experiments, respiration rates and enzyme activity patterns matched the pattern of germination/sporulation cycles of the inoculants. In situ hybridisation, using fluorescently labelled oligonucleotides, also proved the presence of metabolically active streptomycete mycelia in sterile soil. Plasmid stability under varying temperatures and selective pressure was studied using the above system. In both sterile and non sterile amended antibiotic containing soil, no intraspecific transfer of plasmid pIJ673 from S.lividans TK24 to S.griseus CAG17 was detected. The soil microcosm system used, though, permitted detection of intraspecific conjugative transfer of this plasmid from S.lividans TK24 to S.lividans TK23 in soil.  相似文献   

15.
Three genes encoding two types of xylanases (STX-I and STX-II) and an acetyl xylan esterase (STX-III) from Streptomyces thermoviolaceus OPC-520 were cloned, and their DNA sequences were determined. The nucleotide sequences showed that genes stx-II and stx-III were clustered on the genome. The stx-I, stx-II, and stx-III genes encoded deduced proteins of 51, 35.2, and 34.3 kDa, respectively. STX-I and STX-II bound to both insoluble xylan and crystalline cellulose (Avicel). Alignment of the deduced amino acid sequences encoded by stx-I, stx-II, and stx-III demonstrated that the three enzymes contain two functional domains, a catalytic domain and a substrate-binding domain. The catalytic domains of STX-I and STX-II showed high sequence homology to several xylanases which belong to families F and G, respectively, and that of STX-III showed striking homology with an acetyl xylan esterase from S. lividans, nodulation proteins of Rhizobium sp., and chitin deacetylase of Mucor rouxii. In the C-terminal region of STX-I, there were three reiterated amino acid sequences starting from C-L-D, and the repeats were homologous to those found in xylanase A from S. lividans, coagulation factor G subunit alpha from the horseshoe crab, Rarobacter faecitabidus protease I, beta-1,3-glucanase from Oerskovia xanthineolytica, and the ricin B chain. However, the repeats did not show sequence similarity to any of the nine known families of cellulose-binding domains (CBDs). On the other hand, STX-II and STX-III contained identical family II CBDs in their C-terminal regions.  相似文献   

16.
H Ma  K Kendall 《Journal of bacteriology》1994,176(12):3800-3811
We describe the cloning and analysis of two overlapping DNA fragments from Streptomyces coelicolor that cause aerial mycelium to appear more rapidly than usual when introduced into Streptomyces lividans on a low-copy-number plasmid vector. Colonies of S. lividans TK64 harboring either clone produce visible aerial mycelia after only 48 h of growth, rather than the usual 72 to 96 h. From deletion and sequence analysis, this rapid aerial mycelium (Ram) phenotype appears to be due to a cluster of three genes that we have designated ramA, ramB, and ramR. Both ramA and ramB potentially encode 65-kDa proteins with homology to ATP-dependent membrane-translocating proteins. A chromosomal ramB disruption mutant of S. lividans was found to be severely defective in aerial mycelium formation. ramR could encode a 21-kDa protein with significant homology to the UhpA subset of bacterial two-component response regulator proteins. The overall organization and potential proteins encoded by the cloned DNA suggest that this is the S. coelicolor homolog of the amf gene cluster that has been shown to be important for aerial mycelium formation in Streptomyces griseus. However, despite the fact that the two regions probably have identical functions, there is relatively poor homology between the two gene clusters at the DNA sequence level.  相似文献   

17.
18.
A beta-xylanase (GXYN) was purified from the culture filtrate of Streptomyces olivaceoviridis E-86 by successive chromatography on DE-52, CM-Sepharose and Superose 12. The molecular mass of the xylanase was estimated to be 23 kDa, indicating that the enzyme consists of a catalytic domain only. The enzyme displayed an optimum pH of 6, a temperature optimum of 60 degrees C, a pH stability range from 2 to 11 and thermal stability up to 40 degrees C. The N-terminal amino acid sequence of GXYN was A-T-V-I-T-T-N-Q-T-G-T-N-N-G-I-Y-Y-S-F-W-, and sharing a high degree of similarity with the N-terminal sequence of xylanases B and C from Streptomyces lividans, indicating GXYN belongs to family G/11 of glycoside hydrolases. GXYN was inferior to xylanase B from Streptomyces lividans in the hydrolysis of insoluble xylan because of its lack of a xylan binding domain.  相似文献   

19.
The gene for a 104-kDa exocellulase, Cel48A, formerly E6, was cloned from Thermobifida fusca into Escherichia coli and Streptomyces lividans. The DNA sequence revealed a type II cellulose-binding domain at the N-terminus, followed by a FNIII-like domain and ending with a glycosyl hydrolase Family 48 catalytic domain. The enzyme and catalytic domain alone were each expressed in and purified from S. lividans and had very low catalytic activity on swollen cellulose, carboxymethyl cellulose, bacterial microcrystalline cellulose and filter paper. However, in synergistic assays on filter paper, the addition of Cel48A to a balanced mixture of T. fusca endocellulase and exocellulase increased the specific activity from 7.9 to 11.7 micromol cellobiose.min-1.mL-1, more than 15-fold higher than any single enzyme alone. Cel48A retained > 50% of its maximum activity from pH 5 to 9 and from 40 to 60 degrees C. Using SWISSMODEL, the amino-acid sequence of the Cel48Acd was modeled to the known structure of Clostridium cellulolyticum CelF. Family 48 enzymes are remarkably homologous at 35% identity for all their catalytic domains and some of the properties of the 10 members are discussed.  相似文献   

20.
A 36 kDa chitinase was purified by ion exchange and gel filtration chromatography from the culture supernatant of Bacillus thuringiensis HD-1. The chitinase production was independent of the presence of chitin in the growth medium and was produced even in the presence of glucose. The purified chitinase was active at acidic pH, had an optimal activity at pH 6.5, and showed maximum activity at 65 degrees C. Of the various substrates, the enzyme catalyzed the hydrolysis of the disaccharide 4-MU(GlnAc)(2) most efficiently and was therefore classified as an exochitinase. The sequence of the tryptic peptides showed extensive homology with Bacillus cereus 36 kDa exochitinase. The 1083 bp open reading frame encoding 36 kDa chitinase was amplified with primers based on the gene sequence of B. cereus 36 kDa exochitinase. The deduced amino-acid sequence showed that the protein contained an N-terminal signal peptide and consisted of a single catalytic domain. The two conserved signature sequences characteristic of family 18 chitinases were mapped at positions 105-109 and 138-145 of Chi36. The recombinant chitinase was expressed in a catalytically active form in Escherichia coli in the vector pQE-32. The expressed 36 kDa chitinase potentiated the insecticidal effect of the vegetative insecticidal protein (Vip) when used against neonate larvae of Spodoptera litura.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号