首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenous heat shock proteins may modify cell behavior of infected epithelium. The effect of heat shock protein 60 (hsp60) of Actinobacillus actinomycetemcomitans and Escherichia coli, and human recombinant hsp60 on migration of HaCaT skin keratinocytes was studied using the Boyden chamber assay. Hsp60 from different species increased cell migration by two- to fivefold and this effect was inhibited by ERK inhibitor PD 98059, p38 inhibitor SB 203580, and a function-blocking epidermal growth factor receptor (EGFR) antibody. Hsp60 reduced the expression of alpha6-integrin mRNA and its protein levels on the cell surface but had no effect on the expression of beta4, beta1, alpha1, alpha5 or alphav integrin subunits. Hsp60 also significantly inhibited cell adhesion to laminin-5, a ligand of alpha6beta4 integrin. These results suggest that exogenous hsp60 released from bacteria or inflammatory cells may promote epithelial cell migration through activation of EGFR and MAP kinases, and inhibition of alpha6beta4 integrin expression.  相似文献   

2.
Exposure of osteoblast-like MC3T3-E1 cells to sodium arsenite (arsenite) increased the level of heat shock protein 27 (hsp27). The effect of arsenite was dose-dependent in the range of 50 to 200 μM. Arsenite also stimulated arachidonic acid release dose-dependently in the range between 50 and 200 μM in these cells. Both indomethacin, an inhibitor of cyclooxygenase, and nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly enhanced the arsenite-induced accumulation of hsp27. Melittin, an activator of phospholipase A2, significantly enhanced the arsenite-induced accumulation of hsp27. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, inhibited the arsenite-induced accumulation of hsp27. In contrast, 4α-phorbol 12, 13-didecanoate (4α-PDD), a PKC-nonactivating phorbol ester, had little effect. TPA suppressed the arsenite-induced arachidonic acid release, but 4α-PDD had little effect. Arsenite no longer affected cAMP accumulation, inositol phosphates formation nor the formation of choline and phosphocholine in these cells. These results suggest that the response to stress of hsp27 is coupled with the metabolic activity of the arachidonic acid cascade, and the activation of PKC inhibits the induction of hsp27 through the suppression of arachidonic acid release in osteoblast-like cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.  相似文献   

4.
In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically.  相似文献   

5.
6.
Yao H  Tang X  Shao X  Feng L  Wu N  Yao K 《Cell research》2007,17(6):565-571
The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50 μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H202 for 18 h, a high fraction of riLE cells underwent apoptosis, while in the presence ofparthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H202 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation ofcaspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation ofcaspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.  相似文献   

7.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

8.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

9.
Dendritic cells (DCs) are the most potent antigen-presenting cells that play crucial roles in the regulation of immune response. Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F., has been demonstrated to act as a potent immunosuppressive drug capable of inhibiting T cell activation and proliferation. However, little is known about the effects of triptolide on DCs. The present study shows that triptolide does not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10ng/ml, as demonstrated by phosphatidylserine exposure, mitochondria potential decrease, and nuclear DNA condensation. Triptolide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that the anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.  相似文献   

10.
It has been shown that anesthetics have effects of cardiac preconditioning. Heat shock proteins (HSPs) function as molecular chaperone. Among them, HSP27, a low-molecular-weight HSP, abundantly exist in heart. However, the relationship between anesthetics and HSP27 in heart is not yet clarified. We investigated whether thrombin induces or phosphorylates HSP27 in primary cultured mouse myocytes and the effect of midazolam on the thrombin-stimulated HSP27 phosphorylation and the mechanism behind it. Thrombin time dependently phosphorylated HSP27 at Ser-15 and Ser-85 while having no effect on the levels of HSP27. Midazolam markedly suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. Thrombin induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase without affecting stress-activated protein kinase/c-Jun N-terminal kinase. In addition, midazolam attenuated the phosphorylation of thrombin-induced p38 MAP kinase but not that of p44/p42 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the thrombin-induced phosphorylation of HSP27 at both Ser-15 and Ser-85. These results strongly suggest that thrombin induces the HSP27 phosphorylation at least through the p38 MAP kinase activation in cardiac myocytes and that midazolam inhibits the thrombin-induced HSP27 phosphorylation via suppression of p38 MAP kinase activation.  相似文献   

11.
Heat shock protein 60 (hsp60) is a highly conserved stress protein and target of self-reactive T cells in various inflammatory diseases. Not much is known about a possible role in atopic disease. As atopic diseases are considered to be the result of a disturbance in the balance between T helper cells type 2 and regulatory T cells, it is of interest to know whether hsp60 acts as a bystander antigen in atopic disease. Our aim was to investigate whether hsp60 is involved in the chronicity of inflammation of atopic dermatitis (AD). We studied the expression of hsp60 in skin tissue of adults with AD by immunohistochemistry. Peripheral blood mononuclear cells (PBMC) of children with AD were cultured with hsp60 and proliferative responses, cytokine secretion, surface markers, and functional assays were compared to responses of PBMC of healthy controls (HC). Hsp60 was detected more in lesional skin of AD patients compared to nonlesional skin. Furthermore, PBMC of children with AD proliferated more strongly in response to hsp60 compared to HC. hsp60-reactive T cells of atopic children produced high levels of IFNγ and low levels of IL-10. In vitro activation with hsp60 leads to the induction of CD4+CD25bright T cells expressing FOXP3 in both HC as well as in atopic children. However, despite their regulatory phenotype, hsp60-induced CD4+CD25brightCD127FOXP3+ T cells of AD patients were incapable of suppressing effector T cells in vitro. hsp60 is recognized by proinflammatory (IFNγ high, IL-10 low) T cells in atopic patients and is more present in lesional AD skin. This suggests that hsp60-specific T cell responses contribute to local inflammation in AD.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0361-3) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
15.
16.
Protein kinase B (PKB, also named as Akt or RAC-protein kinase), that is activated by cellular stress such as heat shock and hyperosmotic treatment, was revealed to be activated by oxidative stress and by chemical stressors of CdCl2 and NaAsO2 by measuring the activity of the enzyme immunoprecipitated from the transfected COS-7 cells. Upon stress treatment, a 30-kDa phosphoprotein was co-immunoprecipitated with PKB from the cells metabolic labeled with [32P]orthophosphate. The phosphoprotein was identified as Hsp27, a small heat shock protein, by immunoblot analysis and co-immunoprecipitation. The association of Hsp27 was specific to PKB as the heat shock protein was not co-immunoprecipitated with other protein kinases such as protein kinase C and PKN. When the cells were treated with H2O2, PKB was activated gradually and the association of Hsp27 with PKB increased concurrently with the enhancement of PKB activity. In heat-shocked cells, activation of PKB and the association of Hsp27 were detected immediately after the treatment, and the association of the heat shock protein decreased while PKB kept stimulated activity when the cells were further incubated at 37°C. These results suggest that Hsp27 is involved in the activation process of PKB in the signal transduction pathway of various forms of stress.  相似文献   

17.
18.
We have demonstrated that pretreatment but not post-treatment with okadaic acid (OA) can aggravate cytotoxicity as well as alter the kinetics of stress protein expression and protein phosphorylation in heat shocked cells. Compared to heat shock, cells recovering from 1 hr pretreatment of OA at 200 nM and cotreated with heat shock at 45°C for the last 15 min of incubation (OA→HS treatment) exhibited enhanced induction of heat shock proteins (HSPs) 70 and 110. In addition to enhanced expression, the attenuation of HSC70 and HSP90 after the induction peaks was also delayed in OA→HS-treated cells. The above treatment also resulted in the rapid induction of the 78 kDa glucose-regulated protein (GRP78), which expression remained constant in cells recovering from treatment with 200 nM OA for 1 hr, heat shocked at 45°C for 15 min, or in combined treatment in reversed order (HS→OA treatment). Enhanced phosphorylation of vimentin and proteins with molecular weights of 65, 40, and 33 kDa and decreased phosphorylation of a protein with a molecular weight of 29 kDa were also observed in cells recovering from OA→HS treatment. Again, protein phosphorylation in cells recovering from HS→OA treatment did not differ from those in cells treated only with heat shock. Since the alteration in the kinetics of stress protein expression and protein phosphorylation was tightly correlated, we concluded that there is a critical link between induction of the stress proteins and phosphorylation of specific proteins. Furthermore, the rapid induction of GRP78 under the experimental condition offered a novel avenue for studying the regulation of its expression. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号