首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular crowding and order in photosynthetic membranes   总被引:1,自引:0,他引:1  
The integrity and maintenance of the photosynthetic apparatus in thylakoid membranes of higher plants requires lateral mobility of their components between stacked grana thylakoids and unstacked stroma lamellae. Computer simulations based on realistic protein densities suggest serious problems for lateral protein and plastoquinone diffusion especially in grana membranes, owing to strong retardation by protein complexes. It has been suggested that three structural features of grana thylakoids ensure efficient lateral transport: the organization of protein complexes into supercomplexes; the arrangement of supercomplexes into structured assemblies, which facilitates diffusion process in crowded membranes; the limitation of the diameter of grana discs to less than approximately 500 nm, which keeps diffusion times short enough to support regulation of light harvesting and repair of photodamaged photosystem II.  相似文献   

2.
Envelope-free chloroplasts were imaged in situ by contact and tapping mode scanning force microscopy at a lateral resolution of 3-5 nm and vertical resolution of approximately 0.3 nm. The images of the intact thylakoids revealed detailed structural features of their surface, including individual protein complexes over stroma, grana margin and grana-end membrane domains. Structural and immunogold-assisted assignment of two of these complexes, photosystem I (PS I) and ATP synthase, allowed direct determination of their surface density, which, for both, was found to be highest in grana margins. Surface rearrangements and pigment- protein complex redistribution associated with salt-induced membrane unstacking were followed on native, hydrated specimens. Unstacking was accompanied by a substantial increase in grana diameter and, eventually, led to their merging with the stroma lamellae. Concomitantly, PS IIalpha effective antenna size decreased by 21% and the mean size of membrane particles increased substantially, consistent with attachment of mobile light-harvesting complex II to PS I. The ability to image intact photosynthetic membranes at molecular resolution, as demonstrated here, opens up new vistas to investigate thylakoid structure and function.  相似文献   

3.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.  相似文献   

4.
Recent work on the domain organization of the thylakoid is reviewed and a model for the thylakoid of higher plants is presented. According to this model the thylakoid membrane is divided into three main domains: the stroma lamellae, the grana margins and the grana core (partitions). These have different biochemical compositions and have specialized functions. Linear electron transport occurs in the grana while cyclic electron transport is restricted to the stroma lamellae. This model is based on the following results and considerations. (1) There is no good candidate for a long-range mobile redox carrier between PS II in the grana and PS I in the stroma lamellae. The lateral diffusion of plastoquinone and plastocyanin is severely restricted by macromolecular crowding in the membrane and the lumen respectively. (2) There is an excess of 14±18% chlorophyll associated with PS I over that of PS II. This excess is assumed to be localized in the stroma lamellae where PS I drives cyclic electron transport. (3) For several plant species, the stroma lamellae account for 20±3% of the thylakoid membrane and the grana (including the appressed regions, margins and end membranes) for the remaining 80%. The amount of stroma lamellae (20%) corresponds to the excess (14–18%) of chlorophyll associated with PS I. (4) The model predicts a quantum requirement of about 10 quanta per oxygen molecule evolved, which is in good agreement with experimentally observed values. (5) There are at least two pools of each of the following components: PS I, PS II, cytochrome bf complex, plastocyanin, ATP synthase and plastoquinone. One pool is in the grana and the other in the stroma compartments. So far, it has been demonstrated that the PS I, PS II and cytochrome bf complexes each differ in their respective pools.Abbreviations PS I and PS II Photosystem I and II - P 700 reaction center of PS I - LHC II light-harvesting complex II  相似文献   

5.
Thylakoid membranes in higher plant chloroplasts are composed by two distinct domains: stacked grana and stroma lamellae. We developed a procedure for biochemical isolation of grana membranes using mild detergent to maintain membrane structure. Pigment and polypeptide analyses of membrane preparation showed the preparations were indeed enriched in grana membranes. The method was shown to be effective in four different plant species, although with small changes in detergent concentration. Electron microscopy analyses also showed that the preparation consisted of large membrane patches with roughly round shape and diameter comparable with grana membranes in vivo. Furthermore, protein complexes distribution was shown to be maintained with respect to freeze fracture studies, demonstrating that the protocol was successful in isolating membranes close to their in vivo state.  相似文献   

6.
7.
A mild sonication and phase fractionation method has been used to isolate five regions of the thylakoid membrane in order to characterize the functional lateral heterogeneity of photosynthetic reaction centers and light harvesting complexes. Low-temperature fluorescence and absorbance spectra, absorbance cross-section measurements, and picosecond time-resolved fluorescence decay kinetics were used to determine the relative amounts of photosystem II (PSII) and photosystem I (PSI), to determine the relative PSII antenna size, and to characterize the excited-state dynamics of PSI and PSII in each fraction. Marked progressive increases in the proportion of PSI complexes were observed in the following sequence: grana core (BS), whole grana (B3), margins (MA), stroma lamellae (T3), and purified stromal fraction (Y100). PSII antenna size was drastically reduced in the margins of the grana stack and stroma lamellae fractions as compared to the grana. Picosecond time-resolved fluorescence decay kinetics of PSII were characterized by three exponential decay components in the grana fractions, and were found to have only two decay components with slower lifetimes in the stroma. Results are discussed in the framework of existing models of chloroplast thylakoid membrane lateral heterogeneity and the PSII repair cycle. Kinetic modeling of the PSII fluorescence decay kinetics revealed that PSII populations in the stroma and grana margin fractions possess much slower primary charge separation rates and decreased photosynthetic efficiency when compared to PSII populations in the grana stack.  相似文献   

8.
The constant proportion of grana and stroma lamellae in plant chloroplasts   总被引:5,自引:0,他引:5  
The relative proportion of stroma lamellae and grana end membranes was determined from electron micrographs of 58 chloroplasts from 21 different plant species. The percentage of grana end membranes varied between 1 and 21% of the total thylakoid membrane indicating a large variation in the size of grana stacks. By contrast the stroma lamellae account for 20.3 ± 2.5 ( sd )% of the total thylakoid membrane. A plot of percentage stroma lamellae against percentage of grana end membranes fits a straight line with a slope of zero showing that the proportion of stroma lamellae is independent of the size of the grana stacks. That stroma lamellae account for about 20% of the thylakoid membrane is in agreement with fragmentation and separation analysis (Gadjieva et al . Biochim. Biophys. Acta 144: 92–100, 1999). Chloroplasts from spinach, grown under high or low light, were fragmented by sonication and separated by countercurrent distribution into two vesicle populations originating from grana and stroma lamellae plus end membranes, respectively. The separation diagrams were very similar lending independent support for the notion that the proportion of stroma lamellae is constant. The results are discussed in relation to the composition and function of the chloroplast in plants grown under different environmental conditions, and in relation to a recent quantitative model for the thylakoid (Albertsson, Trends Plant Sci. 6: 349–354, 2001).  相似文献   

9.
The relative molar amounts of glycerolipids are similar in grana and stroma lamellae, as are the ratios of total glycerolipid to weight of membrane protein. However the chlorophyll content relative to protein of grana lamellae is about 40% higher than that of stroma lamellae from the same preparation. Previous reports of chemical composition or enzyme activity based on chlorophyll alone can be highly misleading. The large functional and conformational differences between these two membranes may be related to these differences in pigment content, but are likely to result primarily from qualitative protein differences. The data are in accord with a membrane model in which nonpolar regions of membrane protein bind lipid in fairly constant amounts.  相似文献   

10.
The electron transport properties of photosystem II (PSII) from five different domains of the thylakoid membrane were analyzed by flash-induced fluorescence kinetics. These domains are the entire grana, the grana core, the margins from the grana, the stroma lamellae, and the Y100 fraction (which represent more purified stroma lamellae). The two first fractions originate from appressed grana membranes and have PSII with a high proportion of O(2)-evolving centers (80-90%) and efficient electron transport on the acceptor side. About 30% of the granal PSII centers were found in the margin fraction. Two-thirds of those PSII centers evolve O(2), but the electron transfer on the acceptor side is slowed. PSII from the stroma lamellae was less active. The fraction containing the entire stroma has only 43% O(2)-evolving PSII centers and slow electron transfer on the acceptor side. In contrast, PSII centers of the Y100 fraction show no O(2) evolution and were unable to reduce Q(B). Flash-induced fluorescence decay measurements in the presence of DCMU give information about the integrity of the donor side of PSII. We were able to distinguish between PSII centers with a functional Mn cluster and without any Mn cluster, and PSII centers which undergo photoactivation and have a partially assembled Mn cluster. From this analysis, we propose the existence of a PSII activity gradient in the thylakoid membrane. The gradient is directed from the stroma lamellae, where the Mn cluster is absent or inactive, via the margins where photoactivation accelerates, to the grana core domain where PSII is fully photoactivated. The photoactivation process correlates to the PSII diffusion along the membrane and is initiated in the stroma lamellae while the final steps take place in the appressed regions of the grana core. The margin domain is seemingly very important in this process.  相似文献   

11.
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.  相似文献   

12.
The polypeptide composition of whole thylakoids and membrane subfragments was studied by using a modified two-dimensional gel electrophoresis technique of O'Farrell [J. Biol. Chem. 250, 4007-4021 (1975)]. The modifications were lithium dodecyl sulphate solubilization instead instead of SDS, reverse isofocusing and sensitive silver staining procedure. This high-resolution technique allowed us to separate and identify about 170 polypeptides of thylakoid membranes. After separating grana and stroma thylakoids it was found that both types of lamellae contained nearly equal amounts of polypeptides, but about 70 polypeptides were different in the two preparations. In grana thylakoids, 54 polypeptides out of 95 were found to be mainly present in grana and 31 of them were only present in grana preparations. In stroma membranes, 43 polypeptides out of 99 were mainly present in stroma lamellae and 38 of these polypeptides were exclusively present in stroma lamellae. In a functional photosystem II preparation, 61 individual polypeptides could be distinguished. Most of these polypeptides were present in both grana and stroma lamellae, but 22 of them were more pronounced in grana than in stroma lamellae. 9 polypeptides of photosystem II were distinctly different in grana and stroma lamellae, and these differences may connect closely with the functional differences of photosystem II in the two types of thylakoids.  相似文献   

13.
The photosynthetic protein complexes in plants are located in the chloroplast thylakoid membranes. These membranes have an ultrastructure that consists of tightly stacked 'grana' regions interconnected by unstacked membrane regions. The structure of isolated grana membranes has been studied here by cryo-electron microscopy. The data reveals an unusual arrangement of the photosynthetic protein complexes, staggered over two tightly stacked planes. Chaotrope treatment of the paired grana membranes has allowed the separation and isolation of two biochemically distinct membrane fractions. These data have led us to an alternative model of the ultrastructure of the grana where segregation exists within the grana itself. This arrangement would change the existing view of plant photosynthesis, and suggests potential links between cyanobacterial and plant photosystem II light harvesting systems.  相似文献   

14.
The lateral distribution of plastocyanin in the thylakoid lumen of spinach and pea chloroplasts was studied by combining immunocytochemical localization and kinetic measurements of P700+ reduction at high time resolution. In dark-adapted chloroplasts, the concentration of plastocyanin in the photosystem I containing stroma membranes exceeds that in photosystem II containing grana membranes by a factor of about two. Under these conditions, the reduction of P700+ with a halftime of 12 microseconds after a laser flash of saturating intensity indicates that to greater than 95% of total photosystem I a plastocyanin molecule is bound. An analysis of the labeling densities, the length of the different lumenal regions, and the total amounts of plastocyanin and P700 shows that most of the remaining presumable mobile plastocyanin is found in the granal lumen. This distribution of plastocyanin is consistent with a more negative surface charge density in the stromal than in the granal lumen. During illumination the concentration of plastocyanin in grana increases at the expense of that in stroma lamellae, indicating a light-driven diffusion from stroma to grana regions. Our observations provide evidence that a high concentration of plastocyanin in grana in the light favors the lateral electron transport from cytochrome b6/f complexes in appressed grana across the long distance to photosystem I in nonappressed stroma membranes.  相似文献   

15.
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6f complex, and ATPase while depleted in photosystems and light‐harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.  相似文献   

16.
The proteins from both grana and stroma lamellae of maize (Zea mays) mesophyll plastids and from maize bundle sheath plastid membranes have been compared by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels using a discontinuous buffer system. Peptide differences between grana and stroma lamellae were essentially quantitative and not qualitative. Bundle sheath plastid membrane peptides more closely resembled those of the ultrastructurally similar stroma lamellae. However, bundle sheath membranes contained several peptides not apparent in the stroma lamellae.  相似文献   

17.
Mild non-ionic detergents are indispensable in the isolation of intact integral membrane proteins and protein-complexes from biological membranes. Dodecylmaltoside (DM) belongs to this class of detergents being a glucoside-based surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric center of the carbohydrate head group, axial in α-DM and equatorial in β-DM. In this paper, we have investigated the solubilizing properties of α-DM and β-DM on the isolation of photosynthetic complexes from pea thylakoids membranes maintaining their native architecture of stacked grana and stroma lamellae. Exposure of these stacked thylakoids to a single step treatment with increasing concentrations (5-100mM) of α-DM or β-DM resulted in a quick partial or complete solubilization of the membranes. Regardless of the isomeric form used: 1) at the lowest DM concentrations only a partial solubilization of thylakoids was achieved, giving rise to the release of mainly small protein complexes mixed with membrane fragments enriched in PSI from stroma lamellae; 2) at concentrations above 30mM a complete solubilization occurred with the further release of high molecular weight protein complexes identified as dimeric PSII, PSI-LHCI and PSII-LHCII supercomplexes. However, at concentrations of detergent which fully solubilized the thylakoids, the α and β isomeric forms of DM exerted a somewhat different solubilizing effect on the membranes: higher abundance of larger sized PSII-LHCII supercomplexes retaining a higher proportion of LHCII and lower amounts of PSI-LHCI intermediates were observed in α-DM treated membranes, reflecting the mildness of α-DM compared with its isomer. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

18.
Grana are not essential for photosynthesis, yet they are ubiquitous in higher plants and in the recently evolved Charaphyta algae; hence grana role and its need is still an intriguing enigma. This article discusses how the grana provide integrated and multifaceted functional advantages, by facilitating mechanisms that fine-tune the dynamics of the photosynthetic apparatus, with particular implications for photosystem II (PSII). This dynamic flexibility of photosynthetic membranes is advantageous in plants responding to ever-changing environmental conditions, from darkness or limiting light to saturating light and sustained or intermittent high light. The thylakoid dynamics are brought about by structural and organizational changes at the level of the overall height and number of granal stacks per chloroplast, molecular dynamics within the membrane itself, the partition gap between appressed membranes within stacks, the aqueous lumen encased by the continuous thylakoid membrane network, and even the stroma bathing the thylakoids. The structural and organizational changes of grana stacks in turn are driven by physicochemical forces, including entropy, at work in the chloroplast. In response to light, attractive van der Waals interactions and screening of electrostatic repulsion between appressed grana thylakoids across the partition gap and most probably direct protein interactions across the granal lumen (PSII extrinsic proteins OEEp-OEEp, particularly PsbQ-PsbQ) contribute to the integrity of grana stacks. We propose that both the light-induced contraction of the partition gap and the granal lumen elicit maximisation of entropy in the chloroplast stroma, thereby enhancing carbon fixation and chloroplast protein synthesizing capacity. This spatiotemporal dynamic flexibility in the structure and function of active and inactive PSIIs within grana stacks in higher plant chloroplasts is vital for the optimization of photosynthesis under a wide range of environmental and developmental conditions.  相似文献   

19.
Grana and stroma lamellae fractions prepared from illuminated chloroplasts (Lactuca sativa L. var. Manoa) by French press treatment contained less violaxanthin and more zeaxanthin than the corresponding fractions from dark controls. In both fractions, only part of the total violaxanthin was de-epoxidized under illumination, and the ratio of de-epoxidized and unchanged violaxanthin was similar. This not only shows that the de-epoxidation system is present in both grana and stroma thylakoids but also that violaxanthin is heterogeneous in both membranes. The presence and similarity of the de-epoxidation system in grana and stroma lamellae suggest that the function of the violaxanthin cycle is linked to photosynthetic activities which are common to both types of membranes.  相似文献   

20.
The cytochrome bf complex was isolated from spinach thylakoids,and also from separated grana and stroma lamellae vesicles,by a procedure involving NaBr washing, detergent treatment andcentrifugation in sucrose gradients. The resulting complex fromall three types of membranes, were almost completely devoidof chlorophyll and carotenoids. The complexes have kinase activitytowards histone III-S and contain a 64 kDa protein claimed tobe a kinase. Electrophoretic analyses indicate that the complexesare in dimeric form and composed of six polypeptides with molecularmasses of 34/33, 23, 20, 17, 12 and 4 kDa. The complexes containtwo moles cytochrome b6 per mole cytochrome f and one mole RieskeFeS. The 17 kDa and 4 kDa polypeptides are the so called subunit4 and 5 respectively. The 12 kDa protein was identified as plastocyaninby immunoblotting. Plastocyanin and the 4 kDa protein were presentin the cytochrome bf complex even after a second repeated sucrosedensity gradient centrifugation. The sucrose gradient sedimentation pattern was different forthe grana and stroma lamellae complexes. The complex from thestroma lamellae arrives at a higher density than the grana complex.Furthermore, the gradient centrifugation diagram of the stromalamellae consists of one main peak while the diagram of thegrana complex shows two peaks. There is significantly more plastocyaninand 4 kDa protein in the bf complex isolated from stroma lamellaethan from grana. In addition there is a 15 kDa protein in thecomplex isolated from the grana vesicles. Immunoblot analysisafter crosslinking indicated that the 4 kDa protein and theplastocyanin are associated in the cytochrome bf complex. Theoxidoreductase activity is higher (about 50%) in the cytochromebf complex from the grana than from the stroma lamellae fraction.We suggest that a difference in composition of the cytochromebf complex between the two membranes might be important in theregulation of cyclic and non cyclic electron flow. 1Present address: Department of Plant Physiology II, Universityof Warsaw, 00 927 Warsaw, Poland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号