首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Parasitoid host range may proceed from traits affecting host suitability, traits affecting parasitoid foraging behaviour, or both. We tested the hypothesis that encapsulation can be used as a reliable indicator of parasitoid host range in two closely related larval endoparasitoids of Lepidoptera. Cotesia glomerata (L.) (Hymenoptera: Braconidae) is gregarious and a generalist on several species of Pieridae, whereas C. rubecula (Marshall) is solitary and specific to Pieris rapae (L.). We determined the effects of host species ( Pieris brassicae (L.), P. napi (L.) and P. rapae ) (Lepidoptera: Pieridae) and host developmental stage (early first, second and third instar) on encapsulation of parasitoid eggs. Host species and parasitoid species, as well as the resulting interaction between these two factors had significant effects on encapsulation of Cotesia eggs. Encapsulation in Pieris hosts was much lower for C. glomerata (<34%, except for second and third instar of P. rapae ) than for C. rubecula (>32%), even when the latter was parasitizing P. rapae. Encapsulation increased with the age of the larvae, although the only significant difference was for C. glomerata. Overall, P. rapae showed a stronger encapsulation reaction than P. brassicae and P. napi. Encapsulation levels of C. glomerata corresponded well to patterns of female host species and host age preference for oviposition and parasitoid larval performance. In contrast, percentages of encapsulation of C. rubecula were not consistent with host preference and host suitability. We argue that encapsulation alone is unlikely to provide a sufficient explanation for C. glomerata and C. rubecula host range.  相似文献   

2.
Host specificity and host selection by insect parasitoids are hypothesized to be correlated with suitability of the hosts for parasitoid development. The present study investigates the correlation between host suitability and earlier studied host-finding behaviour of two closely related braconid larval parasitoid species, the generalist Cotesia glomerata (L.) and the specialist C. rubecula (Marshall) (Hymenoptera: Braconidae). We compared the capability of both parasitoid species to parasitize and develop in three Pieris host species, i.e. P. brassicae (L.), P. rapae (L.) and P. napi (L.) (Lepidoptera: Pieridae). In laboratory experiments, we measured the effect of host species on fitness parameters such as survival, development, sex ratio and size of parasitoid progeny. The results show that C. glomerata is capable of developing in the three host species, with significant differences in parasitoid survival, clutch size and adult weight among Pieris species. The host range for development was more restricted for C. rubecula. Although C. rubecula is physiologically able to develop in P. brassicae larvae, parasitoid fitness is negatively affected by this host species, compared to its most regular host, P. rapae. A comparison of the present data on host suitability with earlier studies on host-searching behaviour suggests that the host-foraging behaviour of both parasitoid species not only leads to selection of the most suitable host species for parasitoid development, but also plays a significant role in shaping parasitoid host range.  相似文献   

3.
Several recent models examining the developmental strategies of parasitoids attacking hosts which continue feeding and growing after parasitism (=koinobiont parasitoids) assume that host quality is a non-linear function of host size at oviposition. We tested this assumption by comparing the growth and development of males of the solitary koinobiont endoparasitoid, Cotesia rubecula, in first (L1) to third (L3) larval instars of its preferred host, Pieris rapae and in a less preferred host, Pieris brassicae. Beginning 3 days after parasitism, hosts were dissected daily, and both host and parasitoid dry mass was determined. Using data on parasitoid dry mass, we measured the mean relative growth rate of C. rubecula, and compared the trajectories of larval growth of the parasitoid during the larval and pupal stages using non-linear equations. Parasitoids generally survived better, completed development faster, and grew larger in earlier than in later instars of both host species, and adult wasps emerging from P. rapae were significantly larger than wasps emerging from all corresponding instars of P. brassicae. During their early larval stages, parasitoids grew most slowly in L1 P. rapae, whereas in all other host classes of both host species growth to pupation proceeded fairly uniformly. The growth of both host species was markedly reduced after parasitism compared with controls, with the development of P. brassicae arrested at an earlier stage, and at a smaller body mass, than P. rapae. Our results suggest that C. rubecula regulates certain biochemical processes more effectively in P. rapae than in P. brassicae, in accordance with its own nutritional and physiological requirements. Furthermore, we propose that, for parasitoids such as C. rubecula, which do not consume all host tissues prior to pupation, that parasitoid size and host quality may vary independently of host size at oviposition and at larval parasitoid egression.  相似文献   

4.
1. Exotic invasive species can influence population dynamics of native species through top-down or bottom-up forces. The present study examined separate and interactive effects of multiple exotic species invasions on the native mustard white butterfly, Pieris napi oleracea Harris (Lepidoptera: Pieridae), using a stochastic simulation model. 2. P. n. oleracea populations in North America have decreased regionally since the 1860s. Competition with an exotic congener (P. rapae L.), loss of native host plants and parasitism by the introduced broconid wasp (Cotesia glomerata L.), have been suggested to be independently responsible for its decline. The present study examined these hypotheses, as well as an alternative, invasion by an exotic crucifer, garlic mustard (Alliaria petiolata[Bieb.] Cavara & Grande). 3. A stochastic simulation model of P. n. oleracea population dynamics revealed that decreasing the number of host plants available for oviposition and larval development (i.e. habitat loss), sharply reduced the probability of populations persistence and decreased population size for those that persisted. 4. Simulated invasion by garlic mustard also substantially decreased both probability of persistence (= 0 at approximately 50% cover) and mean population size. Persistence probability never reached zero under any C. glomerata scenarios, even when larval mortality in the second generation due to parasitism was 100%. The impact of garlic mustard was intensified by the addition of C. glomerata parasitism. 5. Results suggest that bottom-up forces, loss of host plants through forest understorey loss and/or garlic mustard invasion are the most important forces driving P. n. oleracea population decline. Parasitism by C. glomerata may interact to reduce P. n. oleracea populations more rapidly, but appears insufficient alone to cause local extinction.  相似文献   

5.
Lysibia nana is a solitary, secondary idiobiont hyperparasitoid that attacks newly cocooned pre-pupae and pupae of several closely related gregarious endoparasitoids in the genus Cotesia, including C. glomerata. Prior to oviposition, the female wasp injects paralysing venom into the host, thus preventing further development. Here, host fate, emerging hyperparasitoid mass, and egg-to-adult development time was compared in hosts parasitized at different ages over 24-h intervals. Cocoons of C. glomerata were parasitized by L. nana at 12, 36, 60, 84, and 108 h post-egression from the secondary host, Pieris brassicae. Hyperparasitoid survival exceeded 80% in hosts parasitized within the first 60 h after pupation, but dropped thereafter, with no hyperparasitoids emerging in hosts aged 108 h. The mass of hyperparasitoids was positively correlated with the mass of the host cocoon, and this relationship remained consistent in hosts up to 60 h old. Within each host age cohort, the mass of male and female wasps was not significantly different. Development time in L. nana was uniform in hosts up to 60 h old, but increased significantly in 84-h-old hosts, and male wasps completed their development earlier than female wasps. Regulation of host growth varied with the age of the host at parasitism, with the early growth of older hosts reduced much more dramatically than young hosts. Unlike most parasitoids, pupal hyperparasitoids do not make cocoons but instead pupate within the already prepared cocoon of the host parasitoid. Consequently, for a given mass of cocoon, newly emerged L. nana adults were remarkably similar in size with male and female adults of C. glomerata. This reveals that L. nana is extremely efficient at exploiting its primary parasitoid host.  相似文献   

6.
Cocoons of the specialist parasitoid Cotesia melitaearum , which attacks the Glanville fritillary butterfly in the Åland islands of SW Finland, are parasitized by the generalist hyperparasitoid Gelis agilis . We added experimentally to the system a second host species for G. agilis , C. glomerata , with which C. melitaearum does not compete for resources. After the one-time addition of the second parasitoid the natural populations of C. melitaearum declined in the treatment, as predicted by the apparent competition theory.  相似文献   

7.
The attack rate of a population of the braconid parasitoid Cotesia glomerata, introduced into the USA over 100 years ago as a parasitoid of Pieris rapae, was compared with that of a native British population, which normally attacks P. brassicae, and with that of a P. rapae specialist, Cotesia rubecula. British C. glomerata attacked P. brassicae at a much higher rate than it attacked P. rapae. In comparison with British C. glomerata, C. rubecula showed a higher attack rate with P. rapae. American C. glomerata attacked P. rapae at a slightly higher rate than did British C. glomerata, but not at as high a rate as that achieved by C. rubecula. The differences in each comparison were statistically significant. The possible causes of the differences between British and American C. glomerata attacking P. rapae are discussed. They may be due to genetic or environmental effects. Egg load did not appear to be a factor limiting the number of hosts parasitized under the conditions of the experiments.  相似文献   

8.
Some parasitoid wasps appear to control the behaviour of their hosts. However, altered behaviours of parasitised hosts are not necessarily caused by parasitoids but are sometimes the result of traumatic side effects of parasitism. However, it was difficult for us to discriminate the cause of host's behaviours between manipulation by parasitoids and traumatic side effects. Larvae of the parasitoid wasp Cotesia glomerata form cocoon clusters after egression from the parasitised host caterpillar Pieris brassicae . Following parasitoid egression, host caterpillars survive for several days and remain near the cocoon clusters. These caterpillars may repel solitary pteromalid hyperparasitoid wasps, Trichomalopsis apanteloctena , that attempt to parasitise fresh C. glomerata pupae. We allowed hyperparasitoids to attack cocoon clusters in the field and laboratory and then assessed the costs and benefits to C. glomerata of attachment by the parasitised caterpillars. The eclosion success of C. glomerata in cocoon clusters with attached caterpillars was higher than that in clusters without attached caterpillars in both field and laboratory experiments. This difference was attributed to shorter hyperparasitoid visits to cocoon clusters with attached host caterpillars. However, large cluster size was potentially costly for host attachment, because the duration of host caterpillar attachment decreased with increasing numbers of C. glomerata per caterpillar. This trade-off may be related to shortages of fat body resources, which are shared between the development of wasp larvae and the survival of host caterpillars. Therefore, we concluded that caterpillar attachment satisfied some requirements of host manipulation by C. glomerata .  相似文献   

9.
Two tritrophic systems were experimentally coupled in the present study. One system consisted of a cabbage plant ( Brassica oleracea ), diamondback moth larvae ( Plutella xylostella ) and their parasitic wasp ( Cotesia plutellae ). The other system consisted of a cabbage plant, cabbage butterfly ( Pieris rapae ) larvae and their parasitic wasp ( Cotesia glomerata ). First, we demonstrated that parasitism by C. glomerata and C. plutellae increased and decreased, respectively, on plants infested by both herbivore species than on plants infested by their host larvae alone. We then demonstrated that adult Pl. xylostella oviposited preferentially on plants infested with Pi. rapae , whereas adult Pi. rapae revealed no significant preferences between uninfested plants or plants infested with Pl. xylostella . Based on the present results and those of our previous study, we discuss the oviposition preferences of herbivores in tritrophic contexts.  相似文献   

10.
Insect herbivore outbreaks frequently occur and this may be due to factors that restrict top-down control by parasitoids, for example, host-parasitoid asynchrony, hyperparasitization, resource limitation and climate. Few studies have examined hostparasitoid density relationships during an in sect herbivore outbreak in a n atural ecosystem with diverse parasitoids. We studied parasitization patterns of Cardiaspina psyllids during an outbreak in a Eucalyptus woodland. First, we established the trophic roles of the parasitoids through a species-specific multiplex PCR approach on mummies from which parasitoids emerged. Then, we assessed host-parasitoid density relationships across three spatial scales (leaf, tree and site) over one yeas We detected four endoparasitoid species of the family Encyrtidae (Hymenoptera);two primary parasitoid and one heteronomous hyperparasitoid Psyllaephagus species (the latter with female development as a primary parasitoid and male development as a hyperparasitoid), and the hyperparasitoid Coccidoctonuspsyllae. Parasitoid development was host-synchronized, although synchrony between sites appeared constrained during winter (due to temperature differences). Parasitization was predominantly driven by one primary parasitoid species and was mostly inversely host-density dependent across the spatial scales. Hyperparasitization by C. psyllae was psyllid-density dependent at the site scale, however, this only impacted the rarer primary parasitoid. High larval parasitoid mortality due to density-dependent nymphal psyllid mortality (a consequence of resource limitation) compounded by a summer heat wave was incorporated in the assessment and resulted in density independence of host-parasitoid relationships. As such, high larval parasitoid mortality during insect herbivore outbreaks may contribute to the absence of host density-dependent parasitization during outbreak events.  相似文献   

11.
12.
Parasitoid load affects plant fitness in a tritrophic system   总被引:2,自引:0,他引:2  
Plants attacked by herbivorous insects emit volatile compounds that attract predators or parasitoids of the herbivores. Plant fitness increases when these herbivorous insects are parasitized by solitary parasitoids, but whether gregarious koinobiont parasitoids also confer a benefit to plant fitness has been disputed. We investigated the relationship between parasitoid load of the gregarious Cotesia glomerata (L.) (Hymenoptera: Braconidae), food consumption by larvae of their host Pieris brassicae L. (Lepidoptera: Pieridae), and seed production in a host plant, Brassica nigra L. (Brassicaceae), in a greenhouse experiment. Plants damaged by caterpillars containing single parasitoid broods produced a similar amount of seeds as undamaged control plants and produced significantly more seeds than plants with unparasitized caterpillars feeding on them. Increasing the parasitoid load to levels likely resulting from superparasitization, feeding by parasitized caterpillars was significantly negatively correlated with plant seed production. Higher parasitoid brood sizes were negatively correlated with pupal weight of Cotesia glomerata , revealing scramble competition leading to a fitness trade-off for the parasitoid. Our results suggest that in this tritrophic system plant fitness is higher when the gregarious parasitoid deposits a single brood into its herbivorous host. A prediction following from these results is that plants benefit from recruiting parasitoids when superparasitization is prevented. This is supported by our previous results on down-regulation of synomone production when Brassica oleracea was fed on by parasitized caterpillars of P. brassicae . We conclude that variable parasitoid loads in gregarious koinobiont parasitoids largely explain existing controversies about the putative benefit of recruiting these parasitoids for plant reproduction.  相似文献   

13.
Once widespread, Cook?s scurvy grass (or nau, Lepidium oleraceum) is now confined to a few offshore populations. Classed as nationally endangered by the New?Zealand Department of Conservation, populations of Cook?s scurvy grass are threatened by a number of factors, including introduced herbivorous insect species such as the white butterfly (Pieris rapae) and white rust infection caused by the oomycete Albugo candida. In this paper, we investigate the occurrence of white butterfly on Cook?s scurvy grass and possible interactions with the white rust infection on the northernmost of the Matariki Islands in the Firth of Thames, New?Zealand. We found that larger host plants were more likely to be infested with white butterfly. The occurrence of white butterfly eggs and larvae also decreased as levels of white rust increased. Twenty-eight percent of the white butterfly larvae collected and reared in the laboratory were parasitised by the braconid wasp species Cotesia rubecula. We also reared a hyperparasitoid belonging to the super-family Chalcidoidea from one of the parasitoid cocoons. Further studies on the trophic interactions between Cook?s scurvy grass, Albugo?candida and white butterfly and its parasitoids could improve the understanding of the threats posed by plant pathogens and insect herbivores to populations of Cook?s scurvy grass, which in turn may lead to new management strategies for conservation.  相似文献   

14.
Mussidia nigrivenella Ragonot is a pest of maize cobs in West Africa. It significantly reduces maize yields and grain quality, with quantitative losses of 2-25%at harvest, and up to 10-15% indirect losses due to an increase in storage pest infestation levels. Infestation by M. nigrivenella also significantly increased the susceptibility of maize to Aspergillus flavus infection and subsequent aflatoxin contamination. Surveys conducted in different agro-ecological zones of Benin on cultivated and wild host plants during 1994-1997 revealed one egg parasitoid, three larval parasitoids and one pupal parasitoid attacking M. nigrivenella. Egg parasitism was scarce on all host plants sampled and in all four agro-ecological zones. Parasitism by larval and pupal parasitoids was usually less than 10%, and varied with host plant species. Both larval and pupal parasitoids were rare or absent in cultivated maize fields. The solitary chalcidid pupal parasitoid, Antrocephalus crassipes Masi, was the predominant species, contributing approximately 53% of the observed mortality. Logistic regression analysis indicated that this parasitoid was more prevalent on fruits of Gardenia spp. (Rubiaceae) than on the other host plant species including maize used by M. nigrivenella, and was most abundant between February and September. The differences in parasitoid diversity and parasitism between Benin and other regions suggest that there are opportunities for biological control through introduction of exotic parasitoids or using the 'new association' approach, which uses natural enemies of closely related host species that occupy similar ecological niches to the target pest.  相似文献   

15.
This is the first report of a hyperparasitoid of Prorops nasuta, a primary parasitoid of the coffee berry borer. Aphanogmus sp. is a gregarious ectoparasitoid of larval and pupal stages of P. nasuta, which was found in coffee berry samples collected on the ground of an organic coffee plantation in Western Kenya. The hyperparasitoid shows a clear pattern of emergence from year to year, following its host. Aphanogmus sp. parasitizes around 10% of P. nasuta immature stages under field conditions.  相似文献   

16.
Acquiring sufficient nutrients is particularly important for insects that are unable to synthesize certain nutrient types de novo, as is the case for numerous parasitoid species that do not synthesize lipids. The lipid reserves of parasitoids are acquired from a single host during larval development. This imposes constraints on the quantity and quality of available lipids. In the present study, the lipid dynamics throughout the trophic cascade are investigated by measuring lipogenic ability, modifications in fatty acid composition and host exploitation efficiency in species at different trophic positions within the community of parasitoids associated with the gall wasp Diplolepis rosae L. (Hymenoptera: Cynipidae). The results obtained show that lipid levels remain stable or decline after feeding in all species, indicating that none of the wasps synthesize lipids. Fatty acid composition is highly similar between the gall wasp, parasitoid and hyperparasitoid species, with the exception of the parasitoid Orthopelma mediator Thunberg (Hymenoptera: Ichneumonidae). The divergence of fatty acid composition in O. mediator suggests that this species is able to modify its fatty acid composition after the consumption of host lipids. The efficiency of exploitation of host resource, in terms of dry body mass acquired, varies among the species (41–70%), although it is high overall compared with the efficiencies reported in other animals. Hence, for parasitoid wasps that lack lipid synthesis capabilities, the efficiency of host exploitation is high and fatty acids are consumed directly from the host without modification, leading to stable fatty acid compositions throughout the trophic cascade.  相似文献   

17.
《Journal of Asia》2006,9(4):339-346
A gregarious endoparasitoid wasp, Cotesia glomerata, parasitizes the cabbage butterfly, Pieris rapae. During wandering larval stage for pupal metamorphosis, the parasitoid larvae egress from the parasitized host to form cocoons thus eventually leading to death of the host. This study focused on the effect of C. glomerata parasitization on cellular immune response of P. rapae. For this purpose, an ideal anticoagulant buffer was formulated to procure the hemocytes in native form with morphological, behavioral, and functional characteristics. The hemocytes selectively encapsulated only DEAE beads under in vitro conditions and a quantitative study revealed about 70% of the beads being encapsulated. On the other hand, calyx fluid from C. glomerata injected to P. rapae markedly inhibited the spreading ability of the hemocytes in a dose-dependent manner and also attenuated the in vitro encapsulation response of the hemocytes against the cationic bead. The calyx fluid contained polydnavirus as well as ovarian proteins. The isolated polydnavirus genome consisted of variously sized-segments with their unequal amounts. The P. rapae injected with the calyx fluid expressed several polydnaviral genes within 2 h. These results suggest that the immunosuppression of the parasitized P. rapae may be induced by the polydnaviral gene products as well as ovarian proteins.  相似文献   

18.
Abstract.  1. Superparasitism occurs in Cotesia glomerata (Hymenoptera: Braconidae), a gregarious endoparasitoid of Pieris spp. (Lepidoptera: Pieridae). The response of P. brassicae larvae to superparasitism and the consequences for the parasitoid were examined in order to elucidate the ecological significance of this behaviour.
2. Field surveys of a Swiss population revealed that C. glomerata brood sizes from P. brassicae larvae ranged from three to 158, and both the female ratio and the body weight of emergent wasps correlated negatively with brood size. In the laboratory, single oviposition on P. brassicae larvae did not produce any brood size larger than 62, but brood size increased with superparasitism.
3. Laboratory experiments demonstrated that both naive and experienced female wasps were willing to attack hosts that had been newly parasitised by themselves or conspecifics. Superparasitism reduced survivorship but increased food consumption and weight growth in P. brassicae larvae. Superparasitism lengthened parasitoid development and prolonged the feeding period of host larvae.
4. Despite a trade-off between maximising brood size and optimising the fitness of individual offspring, two or three ovipositions on P. brassicae larvae resulted in a greater dry female mass than did a single oviposition on the host. Thus, superparasitism might be of adaptive significance under certain circumstances, especially when host density is low and unparasitised hosts are rare in a habitat.  相似文献   

19.
Exotic plants often generate physical and chemical changes in native plant communities where they become established. A major challenge is to understand how novel plants may affect trophic interactions in their new habitats, and how native herbivores and their natural enemies might respond to them. We compared the oviposition preference and offspring performance of the crucifer specialist, Pieris brassicae, on an exotic plant, Bunias orientalis, and on a related native plant, Sinapis arvensis. Additionally, we studied the response of the parasitoid, Cotesia glomerata to herbivore-induced plant volatiles (HIPV) and determined the volatile blend composition to elucidate which compound(s) might be involved in parasitoid attraction. On both host plants we also compared the parasitism rate of P. brassicae by C. glomerata. Female butterflies preferred to oviposit on the native plant and their offspring survival and performance was higher on the native plant compared to the exotic. Although, headspace analysis revealed qualitative and quantitative differences in the volatile blends of both plant species, C. glomerata did not discriminate between the HIPV blends in flight-tent bioassays. Nevertheless, parasitism rate of P. brassicae larvae was higher on the native plant under semi-field conditions. Overall, P. brassicae oviposition preference may be more influenced by bottom-up effects of the host plant on larval performance than by top-down pressure exerted by its parasitoid. The potential for dietary breadth expansion of P. brassicae to include the exotic B. orientalis and the role of top-down processes played by parasitoids in shaping herbivore host shifts are further discussed.  相似文献   

20.
几种十字花科蔬菜害虫生态位的研究   总被引:6,自引:0,他引:6  
吴伟坚 《昆虫知识》2003,40(1):42-44
以Levins生态位宽度指数和Pianka生态位重叠指数估计发生在同一营养阶层的 4种主要十字花科植物害虫营养生态位、时间生态位和空间生态位的生态位宽度和重叠度。结果表明小菜蛾、黄曲条跳甲、菜粉蝶和小猿叶甲 4种昆虫的生态位并不完全重叠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号