首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Saccharum officinarum L. is an octoploid with 80 chromosomes and a basic chromosome number of x = 10. It has high stem sucrose and contributes 80% of the chromosomes to the interspecific sugarcane cultivars that are grown commercially for sucrose. A genetic linkage map was developed for S. officinarum (clone IJ76-514) using a segregating population generated from a cross between Q165 (a commercial sugarcane cultivar) and IJ76-514. In total, 40 AFLP and 72 SSR primer pairs were screened across the population, revealing 595 polymorphic bands inherited from IJ76-514. These 595 markers displayed a frequency distribution different from all other sugarcane genetic maps produced, with only 40% being simplex markers (segregated 1:1). Of these 240 simplex markers, 178 were distributed on 47 linkage groups (LGs) and 62 remained unlinked. With the addition of 234 duplex markers and 80 biparental simplex markers (segregating 3:1), 534 markers formed 123 LGs. Using the multi-allelic SSR markers, repulsion phase linkage, and alignment with the Q165 linkage map, 105 of the 123 LGs could be grouped into 10 homology groups (HGs). These 10 HGs were further assigned to the 8 HGs observed in cultivated sugarcane and S. spontaneum. Analysis of repulsion phase linkage indicated that IJ76-514 is neither a complete autopolyploid nor an allopolyploid. Detection of 28 repulsion linkages that occurred between 6 pairs of LGs located in 4 HGs suggested the occurrence of limited preferential chromosome pairing in this species.  相似文献   

2.
Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and the DH population was derived from a commercial hybrid "Hanxiao" (lines SW-13 x L-118). Out of the 614 polyrnorphic markers, 43.49% were not assigned to any of the linkage groups (LGs). Chi-square tests showed that 42.67% markers were distorted from expected Mendelian segregation ratios, and the direction of distorted segregation was mainly toward the paternal parent L-118. After sequentially removing the markers that had an interval distance smaller than 1 cM from the upper marker, the overall quality of the linkage map was increased. Two hundred and sixty-eight molecular markers were mapped into 10 LGs, which were anchored to the corresponding chromosome of the B. rapa reference map based on com- mon simple sequence repeat (SSR) markers. The map covers 973.38 cM of the genome and the average interval distance between markers was 3.63 cM. The number of markers on each LG ranged from 18 (R08) to 64 (R07), with an average interval distance within a single LG from 1.70 cM (R07) to 6.71 cM (R06). Among these mapped markers, 169 were sequence-related amplified polymorphism (SRAP) molecular markers, 50 were SSR markers and 49 were random amplification polymorphic DNA (RAPD) markers. With further saturation to the LG9 the current map offers a genetic tool for loci analysis for important agronomic traits.  相似文献   

3.
RAPD markers were employed for construction of a linkage map and localization of QTLs for oleic acid level using a set of 94 recombinant inbred lines (RILs) of mustard (Brassica juncea L.) as a mapping population. Only 30% of the 235 random primers used were useful in terms of polymorphism detected and the reproducibility of those patterns. Normal Mendelian segregation was observed for the majority of the 130 markers obtained with 71 informative primers; only 13.1% deviated (P < 0.01) from the expected 1:1 ratio. One-hundred and fourteen markers were assigned to 21 linkage groups (LGs) covering a total length of 790.4 cM with an average distance of 6.93 cM between markers. Two quantitative trait loci (QTL) for oleic acid level were mapped to 14- and 10.6-cM marker intervals on two different LGs. Both loci together explained 32.2% of phenotypic variance. One major QTL explained 28.5% of the trait variance observed in this species.  相似文献   

4.
Two molecular markers (RAPD and simple sequence repeat (SSR)) were applied on 12 Corchorus capsularis jute samples. Two of them were Macrophomina phaseolina-resistant and the remaining eight were M. phaseolina-susceptible accessions. Eleven SSR primer combinations out of 18 gave the polymorphic results between M. phaseolina-resistant and -susceptible accessions. Five pairs of sequence characterised amplified region (SCAR) primers designated as SCP-4, SCS-3, SCS-13, SCG-10 and SCU-10 were designed based on the polymorphic loci obtained between JRC-412 and CIM-036. Only SCU-10 and SCS-13 produced polymorphic markers corresponding to OPU-10 and OPS-13 amplified from ‘CIM-036’ and JRC-412, respectively. RAPD and SCAR markers were employed for construction of a linkage map using a set of 67 F2 population of a cross between JRC-412 and CIM-036 as a mapping population. Nine markers were assigned to two linkage groups (LGs) covering a total length of 628.4 cM with an average distance of 28 cM between markers.  相似文献   

5.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

6.
7.
Xie W  Zhang X  Cai H  Huang L  Peng Y  Ma X 《Génome》2011,54(3):212-221
Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.  相似文献   

8.
A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) was constructed from a population of 297 recombinant inbred lines. The parents were the large-fruited inbred cultivar 'Yolo Wonder' and the hot pepper line 'Criollo de Morelos 334', which is heavily used as a source of resistance to a number of diseases. A set of 587 markers (507 amplified fragment length polymorphisms, 40 simple sequence repeats, 19 restriction fragment length polymorphisms, 17 sequence-specific amplified polymorphisms, and 4 sequence tagged sites) were used to generate the map; of these, 489 were assembled into 49 linkage groups (LGs), including 14 LGs with 10 to 60 markers per LG and 35 with 2 to 9 markers per LG. The framework map covered 1857 cM with an average intermarker distance of 5.71 cM. Twenty-three LGs, composed of 69% of the markers and covering 1553 cM, were assigned to 1 of the 12 haploid pepper chromosomes, leaving 26 LGs (304 cM) unassigned. The chromosome framework map built with 250 markers led to a high level of mapping confidence and an average intermarker distance of 6.54 cM. By applying MapPop software, it was possible to select smaller subsets of 141 or 93 most informative individuals with a view to reducing the time and cost of further mapping and phenotyping. To define the smallest number of individuals sufficient for assigning any new marker to a chromosome, subsets from 12 to 45 individuals and a set of 13 markers distributed over all 12 chromosomes were screened. In most cases, the markers were correctly assigned to their expected chromosome, but the accuracy of the map position decreased as the number of individuals was reduced.  相似文献   

9.
Significant progress has been made in the construction of genetic maps in the tetraploid cotton Gossypium hirsutum. However, six linkage groups (LGs) have still not been assigned to specific chromosomes, which is a hindrance for integrated genetic map construction. In the present research, specific bacterial artificial chromosome (BAC) clones constructed in G. hirsutum acc. TM-1 for these six LGs were identified by screening the BAC library using linkage group-specific simple-sequence repeats markers. These BAC clones were hybridized to ten translocation heterozygotes of G. hirsutum. L as BAC-fluorescence in situ hybridization probes, which allowed us to assign these six LGs A01, A02, A03, D02, D03, and D08 to chromosomes 13, 8, 11, 21, 24, and 19, respectively. Therefore, the 13 homeologous chromosome pairs have been established, and we have proposed a new chromosome nomenclature for tetraploid cotton.  相似文献   

10.
The legume genus, Lupinus, has many notable properties that make it interesting from a scientific perspective, including its basal position in the evolution of Papilionoid legumes. As the most economically important legume species, L. angustifolius L. (narrow-leafed lupin) has been subjected to much genetic analysis including linkage mapping and genomic library development. Cytogenetic analysis has been hindered by the large number of small morphologically uniform chromosomes (2n = 40). Here, we present a significant advance: the development of chromosome-specific cytogenetic markers and assignment of the first genetic linkage groups (LGs) to chromosomal maps of L. angustifolius using the bacterial artificial chromosome (BAC)-fluorescence in situ hybridization approach. Twelve clones produced single-locus signals that "landed" on 7 different chromosomes. Based on BAC-end sequences of those clones, genetic markers were generated. Eight clones localized on 3 chromosomes, allowed these chromosomes to be assigned to 3 LGs. An additional single-locus clone may be useful to combine an unassigned group (Cluster-2) with main LGs. This work provides a strong foundation for future identification of all chromosomes with specific markers and for complete integration of narrow-leafed lupin LGs. This resource will greatly facilitate the chromosome assignment and ordering of sequence contigs in sequencing the L. angustifolius genome.  相似文献   

11.
Sugarcane varieties are complex polyploids carrying in excess of 100 chromosomes and are derived from interspecific hybridisation between the domesticated Saccharum officinarum and the wild relative S. spontaneum. A map was constructed in Denotes variety covered by Australian plant breeding rights., an Australian cultivar, from a segregating F1 population, using 40 amplified fragment length polymorphism (AFLP) primer combinations, five randomly amplified DNA fingerprints (RAF) primers and 72 simple sequence repeat (SSR) primers. Using these PCR-based marker systems, we generated 1,365 polymorphic markers, of which 967 (71%) were single-dose (SD) markers. Of these SD 967 markers, 910 were distributed on 116 linkage groups (LGs) with a total map length of 9,058.3 cM. Genome organisation was significantly greater than observed in previously reported maps for Saccharum spp. With the addition of 123 double-dose markers, 36 (3:1) segregating markers and a further five SD markers, 1,074 markers were mapped onto 136 LGs. Repulsion phase linkage detected preferential pairing for 40 LGs, which formed 11 LG pairs and three multi-chromosome pairing groups. Using SSRs, double-dose markers and repulsion phase linkage, we succeeded in forming 127 of the 136 LGs into eight homo(eo)logy groups (HG). Two HGs were each represented by two sets of LGs. These sets of LGs potentially correspond to S. officinarum chromosomes, with each set aligning to either end of one or two larger LGs. The larger chromosomes in the two HGs potentially correspond to S. spontaneum chromosomes. This suggestion is consistent with the different basic chromosome number of the two species that are hybridised to form sugarcane cultivars, S. spontaneum (x=8) and S. officinarum (x=10), and illustrates the structural relationship between the genomes of these two species. The discrepancy of coverage between HGs highlights the difficulty in mapping large parts of the genome.  相似文献   

12.
Molecular cytogenetic characterization of the Antirrhinum majus genome   总被引:3,自引:0,他引:3  
Zhang D  Yang Q  Bao W  Zhang Y  Han B  Xue Y  Cheng Z 《Genetics》2005,169(1):325-335
As a model system in classical plant genetics, the genus Antirrhinum has been well studied, especially in gametophytic self-incompatibility, flower development biology, and transposon-induced mutation. In contrast to the advances in genetic and molecular studies, little is known about Antirrhinum cytogenetics. In this study, we isolated two tandem repetitive sequences, CentA1 and CentA2, from the centromeric regions of Antirrhinum chromosomes. A standard karyotype has been established by anchoring these centromeric repeats on meiotic pachytene chromosome using FISH. An ideogram based on the DAPI-staining pattern of pachytene chromosomes was developed to depict the distribution of heterochromatin in the Antirrhinum majus genome. To integrate the genetic and chromosomal maps, we selected one or two molecular markers from each linkage group to screen an Antirrhinum transformation-competent artificial chromosome (TAC) library. These genetically anchored TAC clones were labeled as FISH probes to hybridize to pachytene chromosomes of A. majus. As a result, the relationship between chromosomes and the linkage groups (LGs) in Antirrhinum has been established.  相似文献   

13.
An improved linkage map of Lentinula edodes (shiitake) was constructed with an HEGS (high-efficiency genome scanning) system. Two hundred twenty-one HEGS-derived amplified fragment length polymorphism (AFLP-H) markers and 21 gene markers were developed and combined with 203 previously developed sequencer-derived AFLP markers (AFLP-S markers) and 3 mating factor loci (A, Bα, and Bβ) to construct a comprehensive linkage analysis. As a result, a novel linkage map with 166 markers including 2 mating factors (A and B), 10 HEGS-derived gene markers, 72 AFLP-H markers, and 82 AFLP-S markers was obtained. Of the total 448 markers, 273 could not be located on a linear map and thus were assigned to linkage groups as accessory markers. The map covers a total length of 1398.4 centimorgans (cM) with an average marker interval distance of 8.4 cM. The map consists of 11 linkage groups (LGs) in agreement with our previous map, and 7 LGs among them were found to contain branched linkages, which may be the result of reciprocal translocations representing dynamic reorganization of the shiitake genome. The previously reported linkage map was improved in terms of number of markers, marker density, linear order of markers, and total map length. Contribution no. 384 of the Tottori Mycological Institute  相似文献   

14.
A total of 122 F1 individuals from a single full-sib interspecific hybrid family crossed between Pinus elliottii var. elliottii (PEE) and P. caribaea var. hondurensis (PCH) were used to construct a detailed genetic linkage maps using four types of molecular markers: sequence-related amplified polymorphism (SRAP), microsatellite (SSR), expressed sequence tag polymorphism (ESTP) and inter-simple sequence repeat (ISSR). There were 381 SRAP, 108 SSR, 25 ESTP and 32 ISSR loci, segregating in the interspecific F1 hybrid individuals. Framework maps were constructed at a LOD score threshold of 4.0 using the JoinMap® 3.0. The map for the male parent (PCH) had 108 markers in 16 linkage groups (LGs), with a total length of 1,065.9 cM (Kosambi) and an average marker interval of 9.87 cM. The map for the female parent (PEE) contained 93 markers in 19 LGs, with a total length of 1,006.7 cM (Kosambi) and an average marker interval of 10.82 cM. The maps for PCH and PEE covered 56.5 and 70.3 % of their respective genomes. Based on the position of 36 loci segregating in both parents, 8 homologous LGs between PEE and PCH were identified.  相似文献   

15.
Morishima K  Nakayama I  Arai K 《Genetica》2008,132(3):227-241
In the present study, the first genetic linkage map of the loach Misgurnus anguillicaudatus was constructed with 164 microsatellite markers and a color locus, and it included 155 newly developed markers. A total of 159 microsatellite markers and a color locus were mapped in 27 linkage groups (LGs). The female map covered 784.5 cM with 153 microsatellite markers and a color locus, whereas the male map covered 662.2 cM with 119 microsatellite markers. The centromeric position in each LG was estimated by marker-centromere mapping based on half-tetrad analysis. In 4 LGs (LG2, LG3, LG4, and LG5), the centromere was estimated at the intermediate region. In LG1, LG11, and LG12, the centromere was estimated to shift from the sub-intermediate region to the end (telomeric). The number of these LGs (7) was identical to the collective number of bi-arm metacentric (5) and sub-metacentric chromosome (2) of the haploid chromosome set (n = 5) of the loach. In the other LGs, the position of the centromere was estimated at the end or outside. These results indicate satisfactory compliance between the linkage map and the chromosome set. Our map would cover approximately almost the entire loach genome because most markers were successfully mapped.  相似文献   

16.
An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F1 progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.  相似文献   

17.
The progeny of 87 BC(1) hybrids of 'Murcott' tangor and 'Pera' sweet orange, genotyped with fluorescent amplified fragment length polymorphism (fAFLP) markers, was used for the construction of genetic maps for both citrus varieties. Mapping strategies, considering the progeny as a result of backcrossing and cross-pollination, were exploited in Mapmaker 2.0 (LOD score >or= 3.0 and or= 3.0 and theta 相似文献   

18.
Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F2 population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.  相似文献   

20.
An F1 mapping population was bred by crossing an accession of wild cardoon with a single Argentinian globe artichoke plant of the variety Estrella del Sur FCA with a view to generating new Cynara cardunculus linkage maps. Genotyping was conducting using a set of 553 SRAP, SSR, AFLP and SNP markers. The 1,465.5 cM map based on the segregation of alleles present in the wild cardoon parent comprised 214 loci distributed across 16 linkage groups (LGs), while the 910.1 cM globe artichoke-based map featured 141 loci falling into 12 LGs covering the total length. Three of the morphological traits (head spininess, leaf spininess and head color) for which the parents contrasted were inherited monogenically, and the genes conditioning them were mapped. A set of 48 co-dominant loci was used to align the LGs with those derived from a reference SSR-based consensus map of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号