首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations are important markers in the early detection of cancer. Clinical specimens such as bodily fluid samples often contain a small percentage of mutated cells in a large background of normal cells. Thus, assays to detect mutations leading to cancer need to be highly sensitive and specific. In addition, they should be possible to carry out in an automated and high-throughput manner to allow large-scale screening. Here we describe a screening method, termed PPEM (PNA-directed PCR, primer extension, MALDI-TOF), that addresses these needs more effectively than do existing methods. DNA samples are first amplified using peptide nucleic acid (PNA)-directed PCR clamping reactions in which mutated DNA is preferentially enriched. The PCR-amplified DNA fragments are then sequenced through primer extension to generate diagnostic products. Finally, mutations are identified using matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This method can detect as few as 3 copies of mutant alleles in the presence of a 10,000-fold excess of normal alleles in a robust and specific manner. In addition, the method can be adapted for simultaneous detection of multiple mutations and is amenable to high-throughput automation.  相似文献   

2.
3.
4.
To study functional diversity of proteins encoded from a single gene, it is important to distinguish the expression levels among the alternatively spliced variants. A variant-specific primer pair is required to amplify each alternatively spliced variant individually. For this purpose, we developed a new feature, homolog-specific primer design (HSPD), in our high-throughput primer and probe design software tool, PRIMEGENS-v2. The algorithm uses a de novo approach to design primers without any prior information of splice variants or close homologs for an input query sequence. It not only designs primer pairs but also finds potential isoforms and homologs of the input sequence. Efficiency of this algorithm was tested for several gene families in soybean. A total of 187 primer pairs were tested under five different abiotic stress conditions with three replications at three time points. Results indicate a high success rate of primer design. Some primer pairs designed were able to amplify all splice variants of a gene. Furthermore, by utilizing combinations within the same multiplex pool, we were able to uniquely amplify a specific variant or duplicate gene. Our method can also be used to design PCR primers to specifically amplify homologs in the same gene family. PRIMEGENS-v2 is available at: http://primegens.org.  相似文献   

5.
6.
7.
We have established the use of a primer extension/mass spectrometry method (the PinPoint assay) for high-throughput SNP genotyping of the human Y chromosome. 118 markers were used to define 116 haplogroups and typing was organised in a hierarchical fashion. Twenty multiplex PCR/primer extension reactions were set up and each sample could be assigned to a haplogroup with only two to five of these multiplex analyses. A single aliquot of one enzyme was found to be sufficient for both PCR and primer extension. We observed 100% accuracy in blind validation tests. The technique thus provides a reliable, cost-effective and automated method for Y genotyping, and the advantages of using a hierarchical strategy can be applied to any DNA segment lacking recombination.  相似文献   

8.
Ross P  Hall L  Haff LA 《BioTechniques》2000,29(3):620-6, 628-9
Pooling of DNA samples before genotyping is a valuable means of streamlining large-scale genotyping efforts in disease association studies, single-nucleotide polymorphism (SNP) validation or mutant allele screening programs. In this report, we explore the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantitative analysis of SNPs. The measurements are based on MALDI-TOF MS analysis of primer extension assays performed on standard mixtures of pooled PCR products at several test loci. The inherent high molecular weight resolution of MALDI-TOF MS conveys high specificity and good signal-to-noise ratio for performing accurate quantitation. The methods described maximize the sensitivity and quantitative capacity of MALDI-TOF MS while preserving the throughput and economic advantages of the MALDI-TOF platform. Using the format described, we demonstrate that allele frequencies as low as 5% can be detected quantitatively and unambiguously.  相似文献   

9.
目的:利用MassARRAY分子量阵列分析系统检测胃癌组织PIK3CA基因突变。方法:从胃癌石蜡包埋组织中提取基因组,PCR反应扩增目的基因片段,MassARRAY分子量阵列分析系统检测PIK3CA基因突变;焦磷酸测序验证检测结果。结果:中国西部地区144例胃癌组织样本中PIK3CA_E542K(1624G>A)突变携带率为77.6%,PIK3CA_E545K(1633G>A)突变携带率为84%。MassARRAY分子量阵列分析系统检测结果与焦磷酸测序结果达到100%吻合。结论:建立了MassARRAY分子量阵列分析系统检测基因突变的方法,初步建立了中国西北地区汉族人群胃癌组织PIK3CA基因PIK3CA_E542K(1624G>A)和PIK3CA_E545K(1633G>A)位点突变频数。  相似文献   

10.
A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.  相似文献   

11.
Targeted gene walking polymerase chain reaction.   总被引:26,自引:3,他引:23       下载免费PDF全文
We describe a modification of a polymerase chain reaction method called 'targeted gene walking' that can be used for the amplification of unknown DNA sequences adjacent to a short stretch of known sequence by using the combination of a single, targeted sequence specific PCR primer with a second, nonspecific 'walking' primer. This technique can replace conventional cloning and screening methods with a single step PCR protocol to greatly expedite the isolation of sequences either upstream or downstream from a known sequence. A number of potential applications are discussed, including its utility as an alternative to cloning and screening for new genes or cDNAs, as a method for searching for polymorphic sites, restriction endonuclease or regulatory regions, and its adaptation to rapidly sequence DNA of lengthy unknown regions that are contiguous to known genes.  相似文献   

12.
13.
A method of mutagenic and unidirectional reassembly (MURA) that can generate libraries of DNA-shuffled and randomly truncated proteins was developed. The method involved fragmenting the template gene(s) randomly by DNase I and reassembling the small fragments with a unidirectional primer by PCR. The MURA products were treated with T4 DNA polymerase and subsequently with a restriction enzyme whose site was located on the region of the MURA primer. The N-terminal-truncated and DNA-shuffled library of a Serratia sp. phospholipase A(1) prepared by this method had an essentially random variation of truncated size and also showed point mutations associated with DNA shuffling. After high-throughput screening on triglyceride-emulsified plates, several mutants exhibiting absolute lipase activity (NPL variants) were obtained. The sequence analysis and the lipase activity assay on the NPL variants revealed that N-terminal truncations at a region beginning with amino acids 61 to 71, together with amino acid substitutions, resulted in the change of substrate specificity from a phospholipase to a lipase. We therefore suggest that the MURA method, which combines incremental truncation with DNA shuffling, can contribute to expanding the searchable sequence space in directed evolution experiments.  相似文献   

14.
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.  相似文献   

15.
Analysis of single nucleotide polymorphisms (SNPs) is a rapidly growing field of research that provides insights into the most common type of differences between individual genomes. The resulting information has a strong impact in the fields of pharmacogenomics, drug development, forensic medicine, and diagnostics of specific disease markers. The technique of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has been shown to be a highly suitable tool for the analysis of DNA. It supplies a very versatile method for addressing a high-throughput SNP genotyping approach. Here, we present the Bruker genotools SNP MANAGER, a new software tool suitable for highly automated MALDI-TOF MS SNP genotyping. The genotools SNP MANAGER administers the sample preparation data, calculates masses of allele-specific primer extension products, performs genotyping analysis, and displays the results. In the current study, we have used the genotools SNP MANAGER to perform an automated duplex SNP analysis of two biallelic markers from the promoter of the gene encoding the inflammatory mediator interleukin-6.  相似文献   

16.
Several different mRNAs can be produced from a given pre-mRNA by regulated alternative splicing, or as the result of deregulations that may lead to pathological states. Analysing splicing patterns is therefore of importance to describe and understand developmental programs, cellular responses to internal or external cues, or human diseases. We describe here a method, Pyrosequencing Analysis of Splicing Patterns (PASP), that combines RT–PCR and pyrosequencing of PCR products. We demonstrated that: (i) Ratios of two pure RNAs mixed in various proportions were accurately measured by PASP; (ii) PASP can be adapted to virtually any splicing event, including mutually exclusive exons, complex patterns of exon skipping or inclusion, and alternative 3′ terminal exons; (iii) In extracts from different organs, the proportions of RNA isoforms measured by PASP reflected those measured by other methods. The PASP method is therefore reliable for analysing splicing patterns. All steps are done in 96-wells microplates, without gel electrophoresis, opening the way to high-throughput comparisons of RNA from several sources.  相似文献   

17.
A protocol relying on Sanger sequencing reactions in combination with mass spectrometry (MS) for sequence confirmation of antisense phosphorothioate oligodeoxynucleotides is described. In this procedure, synthetic phosphorothioate oligodeoxynucleotides are used as reverse primers for extension of matched templates with enough length (approximately 150-300 bp) for well-established Sanger sequencing. Because the complementary strand of modified primer is used directly for sequencing primer extension, the base order shown in the sequencing result is reversely complementary to phosphorothioate oligodeoxynucleotide. This sequencing method can be applied not only to phosphorothioate oligodeoxynucleotides with different lengths (13-21 mer) and base composition but also to sequences with bases' switch, deletion, or insertion. In addition, modified primers incorporate the 5' end of polymerase chain reaction (PCR) products conveying the characters of phosphorothioate modification. The method requires only common reagents and instruments and so is better suited to routine sequence analysis in quality control of phosphorothioate antisense drugs.  相似文献   

18.
19.
Reliable quantification by PCR requires careful experimental design and conditions, often involving sampling of the PCR reactions at different time points or amplifying multiple dilutions of a standard DNA. We describe here an accurate, quantitative and easily automatizable solid-phase method based on competetive PCR. The PCR products are analyzed by solid-phase minisequencing after capture of biotinylated PCR products in streptavidin-coated microtiter wells and single-nucleotide extension of a specific detection primer by a radioactively labelled nucleotide. The results are expressed as numeric cpm-values, and the incorporated label expresses the relative amount of sequence variants in the original template mixture. We have applied the method to determination of allele frequencies in pooled DNA samples, of mitochondrial heteroplasmy, of gene copy numbers, and to forensic DNA analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号