首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variations of the ring current, the local diamagnetic susceptibility anisotropy and the polarization contributions to the chemical shift of the non exchangeable protons of the ribose ring of purine nucleosides are computed as a function of the torsion angle about the glycosyl bond, χCN. The results show that the ring current effect is relatively more important in the purines than in the pyrimidines. In addition, N3 of purines has a local magnetic anisotropy effect similar to the one of the carbonyl group C2O2 of pyrimidine nucleosides. The experimental differences between the chemical shift of the ribose protons of purine nucleosides and of 8 substituted derivatives are discussed in relation to the theoretical variations.  相似文献   

2.
Molecular orbital computations are performed on the different contributions to the variation of the chemical shifts of the non-exchangeable protons of the ribose ring in pyrimidine nucleosides as a function of the torsion angle XCN about the glycosyl bond. They show that the ring current effects are negligible, that the contribution of the atomic diamagnetic anisotropy is important for protons which come at very short distances to the anisotropic group (C2 = 02) and that the polarization effect may have a determining influence on the sign of the variation of the chemical shift. The theoretical results are discussed in relation to the experimental findings on the differences between the chemical shifts of the ribose protons of pyrimidine nucleosides methylated at C5 and C6.  相似文献   

3.
An attempt to elucidate the solution conformation(s) of the synthetic cyclic hexapeptide 5L -ala·D-ala is described. Nuclear magnetic resonance (nmr) spectra are recorded for the purpose of measuring the vicinal coupling constant between the amide and α-protons in each residue and to observe the deuterium exchange rate and temperature dependence of the chemical shift of each amide proton. Low-energy cyclic conformations, whose individual residues are in conformations consistent with the observed amide to α-proton coupling constant, are searched for in an approximate theoretical treatment. The two lowest energy, all trans peptide bond conformations generated are distinguishable by the presence or absence of a single intramolecular hydrogen bond. The observed temperature independence of the chemical shift of one of the amide protons is consistent with the presence of a single intramolecular hydrogen bond, while the observation of similar deuterium exchange rates for each of the amide protons indicates their comparable availability to solvent. Consequently, it is concluded that 5L -ala·D-ala is in rapid equilibrium between conformations with and without a single internal hydrogen bond and possesses considerable conformational flexibility in solution.  相似文献   

4.
Abstract

Substituted purine and deazapurine nucleosides are of great interest in medicinal chemistry. Furthermore, 3′-deoxynucleosides exhibit a number of biological activities. In this research the coupling of 2,6-dichloro-1- or 3-deazapurine with protected 3′-deoxyribose is reported. Depending upon coupling conditions and base structure, different anomeric and isomeric mixtures have been obtained. Extensive studies, utilizing chemical and physical methods, have been performed to assign the correct configuration to the resulting nucleosides.  相似文献   

5.
Two dimensional homonuclear (1H-1H) chemical shift correlation, double resonance and nuclear Overhauser effect difference spectroscopy were used to determine spectral parameters of narasin acid in different solvents approximating the range of polarities encountered within a biological membrane. The observed chemical shift and coupling constant changes were consistent with a polarity mediated shift between two conformational states, with the major conformational adjustments occurring in two specific backbone regions of the molecule previously described as “hinges” (1,2). Evidence suggests that the conformational equilibrium is not only mediated by solvent polarity but may in part be determined by the intrinsic propensity of narasin to form inclusion complexes with H+.  相似文献   

6.
The possible existence of less common hydrogen bonds in three lariat ethers and their alkali-metal ionic complexes have been investigated with one- and two-dimensional (1D and 2D) proton and carbon-13 high resolution liquid state NMR spectroscopy. The occurrence of hydrogen-bonding induced by the addition of metal ions has been identified with the observation of indirect dipolar coupling between the coupling partners involved in the hydrogen-bonding. The addition of metal ions, moreover, causes appreciable change of chemical shift of several protons and carbons. The chemical shift change depends on the ion radius, larger ions causing smaller change. Moreover, the change of chemical shift is in coincidence with the occurrence of hydrogen-bonding. The values of the coupling constants have been obtained for each of these hydrogen bonds and were used for evaluating the hydrogen-bond strength. An intriguing and surprising observation is that a C-H***O hydrogen bond identified in solution by this work was not found in the previous study with X-ray diffraction or other methods.  相似文献   

7.
The synthesis of branched and conformationally restricted analogs of the anticancer nucleosides 3'-C-ethynyluridine (EUrd) and 3'-C-ethynylcytidine (ECyd) is presented. Molecular modeling and (1)H NMR coupling constant analysis revealed that the furanose rings of all analogs except the LNA analog are conformationally biased towards South conformation, and are thus mimicking the structure of ECyd. All target nucleosides were devoid of anti-HIV or anticancer activity.  相似文献   

8.
The 13C nmr spectra of three nucleosides and four C-nucleosides have been recorded and all carbon signals assigned. These data have been utilized for the determination of the structure and conformation of the antibiotic pyrazomycin B. Steric differences have been shown to be reflected in the chemical shift values.  相似文献   

9.
Proton nuclear magnetic resonance shifts, spin-lattice and spin-spin relaxation times have been measured of low-spin bis-pyridine ferriprotoporphyrin(IX) dimethyl ester in chloroform. From the relaxation behavior the hyperfine coupling constant has been obtained and the contact term of the chemical shift was calculated. Deviations between measured and calculated chemical shifts may be attributed to second-order Zeeman interactions. The geometry of pyridine coordinated to the fifth and sixth position of ferriprotoporphyrin(IX) dimethyl ester was estimated from measured relaxation rates. From the non-exponential decay of the Mz magnetization a mean lifetime of taub = 50 ms for pyridine attached to low-spin ferriprotoporphyrin(IX) dimethyl ester was found at 253 K.  相似文献   

10.
The complexation of cyclo(Ala*-Ala) with the cobaltous ions in aqueous solution was investigated by 17O and 14N n.m.r. spectroscopy. The 17O and 14N transverse relaxation time (T2p) and chemical shift (delta omega a) of cyclo(Ala*-Ala) were measured as a function of the temperature at pH = 7.03 +/- 0.02, and pH = 6.45 +/- 0.02, and as a function of pH at room temperature. No effects of pH on the transverse relaxation time and chemical shift were observed. Complementary 17O studies of the solvent water molecules were also carried out. The hyperfine coupling constant and the entropy and enthalpy of activation for the exchange of cyclo(Ala*-Ala) and water molecules between the coordinated and noncoordinated states were determined by least-square fit of theoretical equation for the chemical shift delta omega a to experimental data. The hyperfine coupling constant of the peptide bound oxygen was determined to be (-1.6 +/- 0.1) X 10(5) Hz and the entropy and enthalpy (32.0 +/- 3.0) kJ/mol and (-12.0 +/- 1.0) e.u, respectively. Information obtained from 17O n.m.r. study allows some inferences concerning the probable coordination sphere of the cobaltous ion. There are three types of complexes: Co(H2O)6(2+), CoL X 5H2O and CoL2 X 4H2O, with relative concentrations 19.9%, 2.9%, and 77.2%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The Fenna-Matthews-Olson (FMO) protein of green sulfur bacteria represents an important model protein for the study of elementary pigment-protein couplings. We have previously used a simple approach [Adolphs and Renger (2006) Biophys J 91:2778-2797] to study the shift in local transition energies (site energies) of the FMO protein of Prosthecochloris aestuarii by charged amino acid residues, assuming a standard protonation pattern of the titratable groups. Recently, we have found strong evidence that besides the charged amino acids also the neutral charge density of the protein is important, by applying a combined quantum chemical/electrostatic approach [Müh et al. (2007) Proc Natl Acad Sci USA, in press]. Here, we extract the essential parts from this sophisticated method to obtain a relatively simple method again. It is shown that the main contribution to the site energy shifts is due to charge density coupling (CDC) between the pigments and their pigment, protein and water surroundings and that polarization effects for qualitative considerations can be approximated by screening the Coulomb coupling by an effective dielectric constant.  相似文献   

12.
The differences in conformation in solution of fluorosulfonylbenzoyl nucleosides were analyzed by fluorescence and proton nuclear magnetic resonance spectroscopy. The quantum yield of 5'-p-fluorosulfonylbenzoyl-1,N6-ethenoadenosine (5'-FSB epsilon A) in aqueous solution is low (? = 0.01) as compared to that of its parent nucleoside, ethenoadenosine (? = 0.54), and increases approximately 5-fold when measured in a series of solvents of decreasing dielectric constant. The quantum yield of 5'-p-sulfonylbenzoyl-1,N6-ethenoadenosine covalently bound to glutamate dehydrogenase and pyruvate kinase is also 0.01, suggesting that the analogue may exist in the same conformation when enzyme-bound as when free in solution. In D2O, the resonances of the purine ring protons on 5'-FSB epsilon A, 5'-p-fluorosulfonylbenzoyl adenosine (5'-FSBA), and 5'-p-fluorosulfonylbenzoyl guanosine (5'-FSBG) are shifted upfield by about 0.1-0.3 ppm relative to the corresponding protons of their parent nucleosides. The calculated difference in chemical shift (delta delta) decreases as the dielectric constant of the solvent decreases. The delta delta decreases with increasing temperature. These data indicate that 5'-FSB epsilon A, 5'-FSBA, and 5'-FSBG exist in aqueous solution in a conformation in which the purine ring is intramolecularly stacked with the benzoyl moiety. From the magnitude of change in delta delta for 5'-FSB epsilon A, 5'-FSBA, and 5'-FSBG as a function of solvent, it appears that the three analogues differ in their sensitivity to disruption of stacking. The solution conformation of these three fluorosulfonylbenzoyl nucleoside analogues may be an important determinant of their reaction with various enzymes and may explain differences among the analogues in their reaction with a single enzyme.  相似文献   

13.
Scalar coupling correlations between hydrogen bonded 15N nuclei in non Watson–Crick base pairs is a critical step in the structure determination of unusual nucleic acids. For observing the 2JNN coupling constant between far upfield N2,N6 (amino) nitrogens and far downfield (N1,N3,N7) nitrogens (separated by 150–160 ppm), the HNN-COSY experiment (Dingley and Grzesiek, 1998) is rather insensitive, due to technical difficulties associated with simultaneous excitation of both extremes of the 15N spectrum. These nuclei may be correlated by treating them in a pseudo-heteronuclear manner, using 15N selective pulses. The wide chemical shift separation allows accurate measurement of the 2JNN coupling constant using spin-echo difference methods. Pulse sequences for observation and measurement of 2JNN coupling constants between amino and N7 nuclei are presented and demonstrated on an A-A mismatch segment of the uniformly (15N,13C) labelled DNA sample, d(GGAGGAT)2.  相似文献   

14.
Determination of the DNA sugar pucker using 13C NMR spectroscopy   总被引:1,自引:0,他引:1  
R A Santos  P Tang  G S Harbison 《Biochemistry》1989,28(24):9372-9378
Solid-state 13C NMR spectroscopy of a series of crystalline nucleosides and nucleotides allows direct measurement of the effect of the deoxyribose ring conformation on the carbon chemical shift. It is found that 3'-endo conformers have 3' and 5' chemical shifts significantly (5-10 ppm) upfield of comparable 3'-exo and 2'-endo conformers. The latter two conformers may be distinguished by smaller but still significant differences in the carbon chemical shifts at the C-2' and C-4' positions. High-resolution solid-state NMR of three modifications of fibrous calf thymus DNA shows that these trends are maintained in high-molecular-weight DNA and confirms that the major ring pucker in A-DNA is 3'-endo, while both B-DNA and C-DNA are largely 2'-endo. The data show that 13C NMR spectroscopy is a straightforward and useful probe of DNA ring pucker in both solution and the solid state.  相似文献   

15.
The proton magnetic resonance (PMR) spectrum of acetyl-proline amide in D2O solution has been analysed by computer simulation. The spectra of the cis and the trans isomers have been separated and their PMR parameters (chemical shift and coupling constants) are given. Vicinal coupling constants of the pyrrolidine ring are interpreted by means of a Karplus zone relation. The chemical shift effect of the anisotropy of both peptide planes is considered. It follows that both isomers are puckered with Cgamma in an endo position, but the cis isomer is more rigid than the trans isomer, which moreover undergoes a small interconversion of the Cgamma and Cdelta atoms between two extreme spatial positions. The dihedral angle phi has different values in both isomers. Thus, the dihedral angle between the two peptide planes is smaller in the trans isomer than in the cis isomer.  相似文献   

16.
31P NMR spectra of the cytosolic chicken aspartate aminotransferase have been recorded at 161.7 MHz in the pH range of 5.7 to 8.2. The 31P chemical shift was found to be pH-dependent with a pK of 6.85; difference in the chemical shift at pH 5.7 and 8.2 is only 0.35 ppm. The monoanion-dianion transition of 5'-phosphate group of a model Schiff base of pyridoxal phosphate with 2-aminobutanol in methanol is accompanied by a change in 31P chemical shift of 5.2 ppm. It is inferred that the phosphate group of the protein--bound coenzyme is in dianionic form throughout the investigated pH range; the small pH-dependent change of chemical shift may be due to a protein conformational change that affects O-P-O bond angle. In the presence of the 0.1 M succinate, 31P chemical shift of the enzyme remains constant in the pH range of 5.0 to 8.3.  相似文献   

17.
Sixteen diribonucleoside (3'-5')-H-phosphonates were synthesized via condensation of the protected ribonucleoside 3'-H-phosphonates with nucleosides, and the influence of a nucleoside sequence on the observed stereoselectivity was analyzed. 31P NMR spectroscopy was used to evaluate a relationship between chemical shift and absolute configuration at the phosphorous center of the H-phosphonate diesters as well as of the corresponding phosphorothioate diesters. Although for the most cases such correlation was found, there was however several exceptions to the rule where the relative positions of resonances arisingfrom Rp and Sp diastereomers were reversed.  相似文献   

18.
The 13C-n.m.r. spectra of 19 2-phenyl-1,3-dioxolane, -1,3-dioxane and -1,3-dioxopane derivatives were examined and it was found that both the 13C-n.m.r. chemical shift for the acetal carbon atom and the one-bond coupling constant between the acetal carbon atom and the acetal proton had values that could be used to distinguish between acetals having different ring sizes. In addition, the presence of axial substituents at positions 4 or 6 in substituted 2-phenyl-1,3-dioxane rings and 4 or 7 in substituted 2-phenyl-1,3-dioxepane rings could be readily detected. The structures of a number of carbohydrate examples were determined by using these two parameters and also the chemical shift of the acetal proton from 1H-n.m.r. spectra. The use of all three parameters made assignment of benzylidene acetal ring-size unambiguous.  相似文献   

19.
1H NMR data of a series of thyroid hormone analogues, e.g., thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), 3-monoidothyronine (3-T1), 3'-monoiodothyronine (3'-T1), and thyronine (TO) in dimethylsulfoxide (DMSO) have been obtained on a 300 MHz spectrometer. The chemical shift and coupling constant are determined and tabulated for each aromatic proton. The inner tyrosyl ring protons in T4, T3, and 3,5-T2 have downfield chemical shifts with respect to those of the outer phenolic ring protons. Four-bond cross-ring coupling has been observed in all the monoiodinated rings. However, this long-range coupling does not exist in T4, diiodinated on both rings, and T0, containing no iodines on the rings. There is no evidence that at 30 degrees C these iodothyronines have any motional constraint in DMSO solution. In addition to identification of the hormones, the potential use of some characteristic peaks as probes in binding studies is discussed.  相似文献   

20.
Synthetic methods leading to 5'(3')-O-amino nucleosides have been developed in an effort to prepare derivatives that may have antitumor or antiviral activities. They are based on ring opening of O2,5'-cyclonucleosides with the N-protected hydroxylamines and dehydrative coupling of 5'(3')-O-unprotected nucleosides with N-hydroxyphthalimide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号