首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, whose best‐understood mechanism is sprouting. However, therapeutic VEGF delivery to ischemic muscle induces angiogenesis by the alternative process of intussusception, or vascular splitting, whose molecular regulation is essentially unknown. Here, we identify ephrinB2/EphB4 signaling as a key regulator of intussusceptive angiogenesis and its outcome under therapeutically relevant conditions. EphB4 signaling fine‐tunes the degree of endothelial proliferation induced by specific VEGF doses during the initial stage of circumferential enlargement of vessels, thereby limiting their size and subsequently enabling successful splitting into normal capillary networks. Mechanistically, EphB4 neither inhibits VEGF‐R2 activation by VEGF nor its internalization, but it modulates VEGF‐R2 downstream signaling through phospho‐ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is required for EphB4 regulation of VEGF‐induced intussusceptive angiogenesis. Lastly, after clinically relevant VEGF gene delivery with adenoviral vectors, pharmacological stimulation of EphB4 normalizes dysfunctional vascular growth in both normoxic and ischemic muscle. These results identify EphB4 as a druggable target to modulate the outcome of VEGF gene delivery and support further investigation of its therapeutic potential.  相似文献   

2.
Therapeutic angiogenesis is an attractive strategy to treat patients suffering from peripheral or coronary artery disease. VEGF (vascular endothelial growth factor-A) is the fundamental factor controlling vascular growth in both development and postnatal life. The interplay between the VEGF and Notch signalling pathway has been recently found to regulate the morphogenic events leading to the growth of new vessels by sprouting. Angiogenesis can also take place by an alternative process, i.e. intussusception or vascular splitting. However, little is known about its role in therapeutic angiogenesis and its molecular regulation. In the present article, we briefly review how VEGF dose determines the induction of normal or aberrant angiogenesis and the molecular regulation of sprouting angiogenesis by Notch signalling, and compare this process with intussusception.  相似文献   

3.
The precise mechanisms of SDF‐1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF‐1 and CXCR4. In the current study, we demonstrated SDF‐1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF‐1 expression in wild‐type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF‐1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF‐1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF‐1 application and two times less after blocking this pathway. Bone marrow‐derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF‐1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF‐1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.  相似文献   

4.
Few studies have examined in detail the combined effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) gene delivery on collateral development. Here, we evaluated the potential synergism of naked DNA vectors encoding VEGF and bFGF using a skeletal-muscle based ex vivo angiogenesis assay and compared tissue perfusion and limb loss in a murine model of hindlimb ischemia. In the ex vivo angiogenesis assay, the VEGF+bFGF combination group had a larger capillary sprouting area than those of the LacZ, VEGF, and bFGF groups. Consistent with these results, regional blood flow recovery on day 14 was also highest in the VEGF+bFGF combination group, followed by the bFGF, VEGF, and LacZ groups. The limb loss frequency was 0% in the combination group, whereas the limb loss frequencies of the other groups were 7-29%. The ischemic muscles of the combination group revealed evidence of increased angiogenesis and arteriogenesis and the upregulated expression of genes that may be associated with arteriogenesis, such as those for cardiac ankyrin repeat protein, early growth response factor-1, and transforming growth factor-beta1. Our study has implications for the development of a combined gene therapy for the vascular occlusive diseases.  相似文献   

5.
Key vasculogenic (de-novo vessel forming) and angiogenic (vessel remodelling) events occur in the mouse embryo between embryonic days (E) 8.0 and 10.0 of gestation, during which time the vasculature develops from a simple circulatory loop into a complex, fine structured, three-dimensional organ. Interpretation of vascular phenotypes exhibited by signalling pathway mutants has historically been hindered by an inability to comprehensively image the normal sequence of events that shape the basic architecture of the early mouse vascular system. We have employed Optical Projection Tomography (OPT) using frequency distance relationship (FDR)-based deconvolution to image embryos immunostained with the endothelial specific marker PECAM-1 to create a high resolution, three-dimensional atlas of mouse vascular development between E8.0 and E10.0 (5 to 30 somites). Analysis of the atlas has provided significant new information regarding normal development of intersomitic vessels, the perineural vascular plexus, the cephalic plexus and vessels connecting the embryonic and extraembryonic circulation. We describe examples of vascular remodelling that provide new insight into the mechanisms of sprouting angiogenesis, vascular guidance cues and artery/vein identity that directly relate to phenotypes observed in mouse mutants affecting vascular development between E8.0 and E10.0. This atlas is freely available at http://www.mouseimaging.ca/research/mouse_atlas.html and will serve as a platform to provide insight into normal and abnormal vascular development.  相似文献   

6.
Presenilin-1 (PS1) is a gene responsible for the development of early-onset familial Alzheimer's disease. To explore the potential roles of PS1 in vascular development, we examined the vascular system of mouse embryos lacking PS1. PS1-deficient embryos exhibited cerebral hemorrhages and subcutaneous edema by mid gestation. Immunohistochemical analysis revealed vascular remodeling failure in the stomach and trunk dorsal median region of the skin and insufficient formation of the perineural plexus around the spinal cord of the PS1 mutant embryos. The number of capillary sprouting sites reduced and the capillary diameter increased in the mutant brains, especially at the amygdaloid and striatal regions. Endothelial cells in the sprouting capillaries of the mutant mice showed abnormal morphologies such as multiplication, apoptotic and necrotic images, in contrast to pericytes showing a normal appearance. An in vitro assay using para-aortic splanchnopleural mesoderm (P-Sp) revealed aberrant angiogenesis in the explant culture from the mutant. These findings suggest the essential roles of PS1 in angiogenesis.  相似文献   

7.
Endothelial tip cells are essential for VEGF‐induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial‐specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down‐regulated in EVL‐deficient P5‐retinal endothelial cells. Consistently, EVL deletion impairs VEGF‐induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor‐2 internalization and signaling.  相似文献   

8.
Blood vessel development is a vital process during embryonic development, during tissue growth, regeneration and disease processes in the adult. In the past decade researchers have begun to unravel basic molecular mechanisms that regulate the formation of vascular lumen, sprouting angiogenesis, fusion of vessels, and pruning of the vascular plexus. The understanding of the biology of these angiogenic processes is increasingly driven through studies on vascular development at the cellular resolution. Single cell analysis in vivo, advanced genetic tools and the widespread use of powerful animal models combined with improved imaging possibilities are delivering new insights into endothelial cell form, function and behavior angiogenesis. Moreover, the combination of in silico modeling and experimentation including dynamic imaging promotes insights into higher level cooperative behavior leading to functional patterning of vascular networks. Here we summarize recent concepts and advances in the field of vascular development, focusing in detail on the endothelial cell.  相似文献   

9.
Angiogenesis is the complex process of new blood vessel formation defined by the sprouting of new blood vessels from a pre-existing vessel network. Angiogenesis plays a key role not only in normal development of organs and tissues, but also in many diseases in which blood vessel formation is dysregulated, such as cancer, blindness and ischemic diseases. In adult life, blood vessels are generally quiescent so angiogenesis is an important target for novel drug development to try and regulate new vessel formation specifically in disease. In order to better understand angiogenesis and to develop appropriate strategies to regulate it, models are required that accurately reflect the different biological steps that are involved. The mouse neonatal retina provides an excellent model of angiogenesis because arteries, veins and capillaries develop to form a vascular plexus during the first week after birth. This model also has the advantage of having a two-dimensional (2D) structure making analysis straightforward compared with the complex 3D anatomy of other vascular networks. By analyzing the retinal vascular plexus at different times after birth, it is possible to observe the various stages of angiogenesis under the microscope. This article demonstrates a straightforward procedure for analyzing the vasculature of a mouse retina using fluorescent staining with isolectin and vascular specific antibodies.  相似文献   

10.
The expansion or remodelling of pre-existing blood vessels, known as angiogenesis, by either nascent sprouting, intercalated or intussusceptive growth is a highly regulated process. Angiogenesis is critical not only during normal embryonic vascular development, but also in the progression of several diseases, including cancer, psoriasis, and diabetes. Mouse molecular genetic experiments have shown that the angiopoietins and their receptor Tie2/Tek are indispensable for embryonic vessel development. The importance of the angiopoietin-signalling pathway has also been shown to extend beyond development, into in vitro and in vivo experimental models of angiogenic growth. Currently the precise role of the angiopoietins remains unclear. However, what is emerging from genetic, xenograft transplant, histochemical and cell culture experiments are that the response of endothelial cells to angiopoietins appears to be context and endothelial cell type specific.  相似文献   

11.
Prostaglandin endoperoxide H synthases and their arachidonate products have been implicated in modulating angiogenesis during tumor growth and chronic inflammation. Here we report the involvement of thromboxane A(2), a downstream metabolite of prostaglandin H synthase, in angiogenesis. A TXA(2) mimetic, U46619, stimulated endothelial cell migration. Angiogenic basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) increased TXA(2) synthesis in endothelial cells three- to fivefold. Inhibition of TXA(2) synthesis with furegrelate or CI reduced HUVEC migration stimulated by VEGF or bFGF. A TXA(2) receptor antagonist, SQ29,548, inhibited VEGF- or bFGF-stimulated endothelial cell migration. In vivo, CI inhibited bFGF-induced angiogenesis. Finally, development of lung metastasis in C57Bl/6J mice intravenously injected with Lewis lung carcinoma or B16a cells was significantly inhibited by thromboxane synthase inhibitors, CI or furegrelate sodium. Our data demonstrate the involvement of TXA(2) in angiogenesis and development of tumor metastasis.  相似文献   

12.
The microvasculariaztion of the lateral line organs (LLOs) of the adult pipid frog, Xenopus laevis was studied by scanning electron microscopy of vascular corrosion casts (VCCs) and correlative light microscopy of paraplast embedded tissues sections. Scanning electron micrographs of VCCs revealed that each neuromast within the LLO rests on a distinct bowl‐like capillary network (vascular bowl). One to three vascular bowls were supplied by an ascending arteriole and drained by a descending venule towards the skin deep dermal vascular network. Blood flow regulation mechanisms in form of intimal cushions were present at the origin of ascending arterioles supplying LLOs, microvenous valves were present at the confluence of deep dermal venules and veins. This together with sprouting and nonsprouting angiogenesis (intussusceptive microvascular growth) found in vascular bowls demonstrate that in adult Xenopus the capillary bed of LLO's still can be adjusted to changing energetic needs. J. Morphol. 275:497–503, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
How mechanical factors affect angiogenesis and how they and chemical angiogenic factors work in concert remain not yet well‐understood. This study investigated the interactive effects of cyclic uniaxial stretch and two potent proangiogenic molecules [basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF)] on angiogenesis using a stretchable three‐dimensional (3‐D) cell culture model. Endothelial cells seeded atop a 3‐D collagen gel underwent sprouting angiogenesis while being subjected to either 10 or 20% cyclic uniaxial stretch at a frequency of either 1/12 or 1 Hz, in conjunction with an elevated concentration of bFGF or VEGF. Without the presence of additional growth factors, 10 and 20% stretch at 1 Hz induced angiogenesis and the perpendicular alignment of new sprouts, and both inductive effects were abolished by cytochalasin D (an actin polymerization inhibitor). While “10% stretch at 1 Hz,” “20% stretch at 1 Hz,” bFGF, and VEGF were strong angiogenesis stimulants individually, only the combination of “20% stretch at 1 Hz” and bFGF had an additive effect on inducing new sprouts. Interestingly, the combination of “20% stretch at a lower frequency (1/12 Hz)” and bFGF decreased sprouting angiogenesis, even though the level of perpendicular alignment of new sprouts was the same for both stretch frequencies. Taken together, these results demonstrate that both stretch frequency and magnitude, along with interactions with various growth factors, are essential in mediating formation of endothelial sprouts and vascular patterning. Furthermore, work in this area is warranted to elucidate synergistic or competitive signaling mechanisms. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:879–888, 2014  相似文献   

14.
What makes vessels grow with exercise training?   总被引:11,自引:0,他引:11  
Exercise and muscle contractions create a powerful stimulus for structural remodeling of the vasculature. An increase in flow velocity through a vessel increases shear stress, a major stimulus for enlargement of conduit vessels. This leads to an endothelial-dependent, nitric oxide-dependent enlargement of the vessel. Increased flow within muscle, in the absence of contractions, leads to an enhanced capillarity by intussusceptive angiogenesis, a process of capillary splitting by intraluminal longitudinal divide. In contrast, sprouting angiogenesis requires extensive endothelial cell proliferation, with degradation of the extracellular matrix to permit migration and tube formation. This occurs during muscle adaptations to chronic contractions and/or muscle overload. The angiogenic growth factor VEGF appears to be an important element in angiogenesis. Recent advances in research have identified hemodynamic and mechanical stimuli that upregulate angiogenic processes, demonstrated a complexity of potent growth factors and interactions with their corresponding receptors, detected an interaction of cellular signaling events, and identified important tissue reorganization processes that must be coordinated to effect vascular remodeling. It is likely that much of this information is applicable to the vascular remodeling that occurs in response to exercise and/or muscle contractions.  相似文献   

15.
Angiogenesis     
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.  相似文献   

16.
17.
Angiogenesis, the formation of new blood vessels from pre-existing vessels, is critical to most physiological processes and many pathological conditions. During zebrafish development, angiogenesis expands the axial vessels into a complex vascular network that is necessary for efficient oxygen delivery. Although the dorsal aorta and the axial vein are spatially juxtaposed, the initial angiogenic sprouts from these vessels extend in opposite directions, indicating that distinct cues may regulate angiogenesis of the axial vessels. We found that angiogenic sprouts from the dorsal aorta are dependent on vascular endothelial growth factor A (Vegf-A) signalling, and do not respond to bone morphogenetic protein (Bmp) signals. In contrast, sprouts from the axial vein are regulated by Bmp signalling independently of Vegf-A signals, indicating that Bmp is a vein-specific angiogenic cue during early vascular development. Our results support a paradigm whereby different signals regulate distinct programmes of sprouting angiogenesis from the axial vein and dorsal aorta, and indicate that signalling heterogeneity contributes to the complexity of vascular networks.  相似文献   

18.
Crumbs proteins are transmembrane proteins that regulate cellular apico-basal polarity. Animals carrying mutated crb1 present retinal vascular abnormalities; this mutation is associated with progressive retinal degeneration with intraretinal cystoid fluid collection in humans. This study aimed to evaluate a potential role of crumbs proteins in retinal vascular development and maintenance. We demonstrated that crumbs homologues (CRBs) were differentially expressed and changed dramatically during mouse retinal vascular development. Intravitreal injection of CRB1 and CRB2 siRNA induced delayed development of the deep capillary plexus and premature development of the intermediate capillary plexus, resulting in disrupted vascular integrity. However, microfluidic chip assay using human retinal endothelial cells revealed that CRBs do not directly affect in vitro retinal angiogenesis. CRBs control retinal angiogenesis by regulating neuroglial vascular endothelial growth factor-A (VEGFA) and matrix metalloproteinase-3 expression. These findings demonstrate a pivotal role of CRBs in providing critical neurotrophic support through normal layered vascular network development and maintenance. This implies that preserving CRBs and restoring layered retinal vascular networks could be novel targets for preventing vision-threatening retinal diseases.  相似文献   

19.
Vascularization of cancer is a complex and heterogenous process where neoangiogenesis by sprouting is only one of the possible mechanisms that also include postnatal vasculogenesis, vessel incorporation, intussusceptive microvascular growth, glomeruloid angiogenesis and vascular mimicry. Furthermore, the mechanism of vascularization may also depend on the cancer type and the host tissue as well. Antivascular agents can be divided into angiosuppressive ones (endothelial cell proliferation inhibitors), vascular-targeted agents (microvessel disrupting agents) and anti-hypoxia agents (targeting the molecular pathways responsible for the development of the angiogenic phenotype). Since antivascular therapy is a special form of targeted therapy, it is necessary to apply it in a rational manner to consider the type of vascularization, the molecular background of the angiogenic phenotype, the stage of the disease and the standard anticancer therapy. Whithout such a fine-tuning, antivascular therapies cannot be integrated more successfully into the management of cancer patients.  相似文献   

20.
Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4 variants were overexpressed in blood vessels of tumor xenografts. Our studies revealed that EphB4 acts as a negative regulator of blood vessel branching and vascular network formation, switching the vascularization program from sprouting angiogenesis to circumferential vessel growth. In parallel, EphB4 reduces the permeability of the tumor vascular system via activation of the angiopoietin-1/Tie2 system at the endothelium/pericyte interface. Furthermore, overexpression of EphB4 variants in blood vessels during (i) vascularization of non-neoplastic cell grafts and (ii) retinal vascularization revealed that these functions of EphB4 apply to postnatal, non-neoplastic angiogenesis in general. This implies that both neoplastic and non-neoplastic vascularization is driven not only by a vascular initiation program but also by a vascular patterning program mediated by guidance molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号