首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most scoring functions for protein-protein docking algorithms are either atom-based or residue-based, with the former being able to produce higher quality structures and latter more tolerant to conformational changes upon binding. Earlier, we developed the ZRANK algorithm for reranking docking predictions, with a scoring function that contained only atom-based terms. Here we combine ZRANK's atom-based potentials with five residue-based potentials published by other labs, as well as an atom-based potential IFACE that we published after ZRANK. We simultaneously optimized the weights for selected combinations of terms in the scoring function, using decoys generated with the protein-protein docking algorithm ZDOCK. We performed rigorous cross validation of the combinations using 96 test cases from a docking benchmark. Judged by the integrative success rate of making 1000 predictions per complex, addition of IFACE and the best residue-based pair potential reduced the number of cases without a correct prediction by 38 and 27% relative to ZDOCK and ZRANK, respectively. Thus combination of residue-based and atom-based potentials into a scoring function can improve performance for protein-protein docking. The resulting scoring function is called IRAD (integration of residue- and atom-based potentials for docking) and is available at http://zlab.umassmed.edu.  相似文献   

2.
Hwang H  Pierce B  Mintseris J  Janin J  Weng Z 《Proteins》2008,73(3):705-709
We present version 3.0 of our publicly available protein-protein docking benchmark. This update includes 40 new test cases, representing a 48% increase from Benchmark 2.0. For all of the new cases, the crystal structures of both binding partners are available. As with Benchmark 2.0, Structural Classification of Proteins (Murzin et al., J Mol Biol 1995;247:536-540) was used to remove redundant test cases. The 124 unbound-unbound test cases in Benchmark 3.0 are classified into 88 rigid-body cases, 19 medium-difficulty cases, and 17 difficult cases, based on the degree of conformational change at the interface upon complex formation. In addition to providing the community with more test cases for evaluating docking methods, the expansion of Benchmark 3.0 will facilitate the development of new algorithms that require a large number of training examples. Benchmark 3.0 is available to the public at http://zlab.bu.edu/benchmark.  相似文献   

3.
Pierce B  Weng Z 《Proteins》2007,67(4):1078-1086
Protein-protein docking requires fast and effective methods to quickly discriminate correct from incorrect predictions generated by initial-stage docking. We have developed and tested a scoring function that utilizes detailed electrostatics, van der Waals, and desolvation to rescore initial-stage docking predictions. Weights for the scoring terms were optimized for a set of test cases, and this optimized function was then tested on an independent set of nonredundant cases. This program, named ZRANK, is shown to significantly improve the success rate over the initial ZDOCK rankings across a large benchmark. The amount of test cases with No. 1 ranked hits increased from 2 to 11 and from 6 to 12 when predictions from two ZDOCK versions were considered. ZRANK can be applied either as a refinement protocol in itself or as a preprocessing stage to enrich the well-ranked hits prior to further refinement.  相似文献   

4.
Huang SY  Zou X 《Proteins》2008,72(2):557-579
Using an efficient iterative method, we have developed a distance-dependent knowledge-based scoring function to predict protein-protein interactions. The function, referred to as ITScore-PP, was derived using the crystal structures of a training set of 851 protein-protein dimeric complexes containing true biological interfaces. The key idea of the iterative method for deriving ITScore-PP is to improve the interatomic pair potentials by iteration, until the pair potentials can distinguish true binding modes from decoy modes for the protein-protein complexes in the training set. The iterative method circumvents the challenging reference state problem in deriving knowledge-based potentials. The derived scoring function was used to evaluate the ligand orientations generated by ZDOCK 2.1 and the native ligand structures on a diverse set of 91 protein-protein complexes. For the bound test cases, ITScore-PP yielded a success rate of 98.9% if the top 10 ranked orientations were considered. For the more realistic unbound test cases, the corresponding success rate was 40.7%. Furthermore, for faster orientational sampling purpose, several residue-level knowledge-based scoring functions were also derived following the similar iterative procedure. Among them, the scoring function that uses the side-chain center of mass (SCM) to represent a residue, referred to as ITScore-PP(SCM), showed the best performance and yielded success rates of 71.4% and 30.8% for the bound and unbound cases, respectively, when the top 10 orientations were considered. ITScore-PP was further tested using two other published protein-protein docking decoy sets, the ZDOCK decoy set and the RosettaDock decoy set. In addition to binding mode prediction, the binding scores predicted by ITScore-PP also correlated well with the experimentally determined binding affinities, yielding a correlation coefficient of R = 0.71 on a test set of 74 protein-protein complexes with known affinities. ITScore-PP is computationally efficient. The average run time for ITScore-PP was about 0.03 second per orientation (including optimization) on a personal computer with 3.2 GHz Pentium IV CPU and 3.0 GB RAM. The computational speed of ITScore-PP(SCM) is about an order of magnitude faster than that of ITScore-PP. ITScore-PP and/or ITScore-PP(SCM) can be combined with efficient protein docking software to study protein-protein recognition.  相似文献   

5.
Protein docking using a genetic algorithm   总被引:2,自引:0,他引:2  
A genetic algorithm (GA) for protein-protein docking is described, in which the proteins are represented by dot surfaces calculated using the Connolly program. The GA is used to move the surface of one protein relative to the other to locate the area of greatest surface complementarity between the two. Surface dots are deemed complementary if their normals are opposed, their Connolly shape type is complementary, and their hydrogen bonding or hydrophobic potential is fulfilled. Overlap of the protein interiors is penalized. The GA is tested on 34 large protein-protein complexes where one or both proteins has been crystallized separately. Parameters are established for which 30 of the complexes have at least one near-native solution ranked in the top 100. We have also successfully reassembled a 1,400-residue heptamer based on the top-ranking GA solution obtained when docking two bound subunits.  相似文献   

6.
Chen R  Weng Z 《Proteins》2003,51(3):397-408
Shape complementarity is the most basic ingredient of the scoring functions for protein-protein docking. Most grid-based docking algorithms use the total number of grid points at the binding interface to quantify shape complementarity. We have developed a novel Pairwise Shape Complementarity (PSC) function that is conceptually simple and rapid to compute. The favorable component of PSC is the total number of atom pairs between the receptor and the ligand within a distance cutoff. When applied to a benchmark of 49 test cases, PSC consistently ranks near-native structures higher and produces more near-native structures than the traditional grid-based function, and the improvement was seen across all prediction levels and in all categories of the benchmark. Without any post-processing or biological information about the binding site except the complementarity-determining region of antibodies, PSC predicts the complex structure correctly for 6 test cases, and ranks at least one near-native structure in the top 20 predictions for 18 test cases. Our docking program ZDOCK has been parallelized and the average computing time is 4 minutes using sixteen IBM SP3 processors. Both ZDOCK and the benchmark are freely available to academic users (http://zlab.bu.edu/~ rong/dock).  相似文献   

7.
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem.  相似文献   

8.
Barik A  C N  P M  Bahadur RP 《Proteins》2012,80(7):1866-1871
We have developed a nonredundant protein-RNA docking benchmark dataset, which is derived from the available bound and unbound structures in the Protein Data Bank involving polypeptide and nucleic acid chains. It consists of nine unbound-unbound cases where both the protein and the RNA are available in the free form. The other 36 cases are of unbound-bound type where only the protein is available in the free form. The conformational change upon complex formation is calculated by a distance matrix alignment method, and based on that, complexes are classified into rigid, semi-flexible, and full flexible. Although in the rigid body category, no significant conformational change accompanies complex formation, the fully flexible test cases show large domain movements, RNA base flips, etc. The benchmark covers four major groups of RNA, namely, t-RNA, ribosomal RNA, duplex RNA, and single-stranded RNA. We find that RNA is generally more flexible than the protein in the complexes, and the interface region is as flexible as the molecule as a whole. The structural diversity of the complexes in the benchmark set should provide a common ground for the development and comparison of the protein-RNA docking methods. The benchmark can be freely downloaded from the internet.  相似文献   

9.
Improved side-chain modeling for protein-protein docking   总被引:1,自引:0,他引:1  
Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient method for sampling off-rotamer side-chain conformations by torsion space minimization during protein-protein docking starting from discrete rotamer libraries supplemented with side-chain conformations taken from the unbound structures, and show that the new method improves side-chain modeling and increases the energetic discrimination between good and bad models. Analysis of the distribution of side-chain interaction energies within and between the two protein partners shows that the new method leads to more native-like distributions of interaction energies and that the neglect of side-chain entropy produces a small but measurable increase in the number of residues whose interaction energy cannot compensate for the entropic cost of side-chain freezing at the interface. The power of the method is highlighted by a number of predictions of unprecedented accuracy in the recent CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

10.
11.
Although reliable docking can now be achieved for systems that do not undergo important induced conformational change upon association, the presence of flexible surface loops, which must adapt to the steric and electrostatic properties of a partner, generally presents a major obstacle. We report here the first docking method that allows large loop movements during a systematic exploration of the possible arrangements of the two partners in terms of position and rotation. Our strategy consists in taking into account an ensemble of possible loop conformations by a multi-copy representation within a reduced protein model. The docking process starts from regularly distributed positions and orientations of the ligand around the whole receptor. Each starting configuration is submitted to energy minimization during which the best-fitting loop conformation is selected based on the mean-field theory. Trials were carried out on proteins with significant differences in the main-chain conformation of the binding loop between isolated form and complexed form, which were docked to their partner considered in their bound form. The method is able to predict complexes very close to the crystal complex both in terms of relative position of the two partners and of the geometry of the flexible loop. We also show that introducing loop flexibility on the isolated protein form during systematic docking largely improves the predictions of relative position of the partners in comparison with rigid-body docking.  相似文献   

12.
We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.  相似文献   

13.
Park MS  Gao C  Stern HA 《Proteins》2011,79(1):304-314
To investigate the effects of multiple protonation states on protein-ligand recognition, we generated alternative protonation states for selected titratable groups of ligands and receptors. The selection of states was based on the predicted pK(a) of the unbound receptor and ligand and the proximity of titratable groups of the receptor to the binding site. Various ligand tautomer states were also considered. An independent docking calculation was run for each state. Several protocols were examined: using an ensemble of all generated states of ligand and receptor, using only the most probable state of the unbound ligand/receptor, and using only the state giving the most favorable docking score. The accuracies of these approaches were compared, using a set of 176 protein-ligand complexes (15 receptors) for which crystal structures and measured binding affinities are available. The best agreement with experiment was obtained when ligand poses from experimental crystal structures were used. For 9 of 15 receptors, using an ensemble of all generated protonation states of the ligand and receptor gave the best correlation between calculated and measured affinities.  相似文献   

14.
15.
《Proteins》2017,85(4):741-752
Protein–RNA docking is still an open question. One of the main challenges is to develop an effective scoring function that can discriminate near‐native structures from the incorrect ones. To solve the problem, we have constructed a knowledge‐based residue‐nucleotide pairwise potential with secondary structure information considered for nonribosomal protein–RNA docking. Here we developed a weighted combined scoring function RpveScore that consists of the pairwise potential and six physics‐based energy terms. The weights were optimized using the multiple linear regression method by fitting the scoring function to L_rmsd for the bound docking decoys from Benchmark II. The scoring functions were tested on 35 unbound docking cases. The results show that the scoring function RpveScore including all terms performs best. Also RpveScore was compared with the statistical mechanics‐based method derived potential ITScore‐PR, and the united atom‐based statistical potentials QUASI‐RNP and DARS‐RNP. The success rate of RpveScore is 71.6% for the top 1000 structures and the number of cases where a near‐native structure is ranked in top 30 is 25 out of 35 cases. For 32 systems (91.4%), RpveScore can find the binding mode in top 5 that has no lower than 50% native interface residues on protein and nucleotides on RNA. Additionally, it was found that the long‐range electrostatic attractive energy plays an important role in distinguishing near‐native structures from the incorrect ones. This work can be helpful for the development of protein–RNA docking methods and for the understanding of protein–RNA interactions. RpveScore program is available to the public at http://life.bjut.edu.cn/kxyj/kycg/2017116/14845362285362368_1.html Proteins 2017; 85:741–752. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The tertiary structures of protein complexes provide a crucial insight about the molecular mechanisms that regulate their functions and assembly. However, solving protein complex structures by experimental methods is often more difficult than single protein structures. Here, we have developed a novel computational multiple protein docking algorithm, Multi‐LZerD, that builds models of multimeric complexes by effectively reusing pairwise docking predictions of component proteins. A genetic algorithm is applied to explore the conformational space followed by a structure refinement procedure. Benchmark on eleven hetero‐multimeric complexes resulted in near‐native conformations for all but one of them (a root mean square deviation smaller than 2.5Å). We also show that our method copes with unbound docking cases well, outperforming the methodology that can be directly compared with our approach. Multi‐LZerD was able to predict near‐native structures for multimeric complexes of various topologies.Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The prediction of the structure of the protein-protein complex is of great importance to better understand molecular recognition processes. During systematic protein-protein docking, the surface of a protein molecule is scanned for putative binding sites of a partner protein. The possibility to include external data based on either experiments or bioinformatic predictions on putative binding sites during docking has been systematically explored. The external data were included during docking with a coarse-grained protein model and on the basis of force field weights to bias the docking search towards a predicted or known binding region. The approach was tested on a large set of protein partners in unbound conformations. The significant improvement of the docking performance was found if reliable data on the native binding sites were available. This was possible even if data for single key amino acids at a binding interface are included. In case of binding site predictions with limited accuracy, only modest improvement compared with unbiased docking was found. The optimisation of the protocol to bias the search towards predicted binding sites was found to further improve the docking performance resulting in approximately 40% acceptable solutions within the top 10 docking predictions compared with 22% in case of unbiased docking of unbound protein structures.  相似文献   

18.
Lorenzen S  Zhang Y 《Proteins》2007,68(1):187-194
Most state-of-the-art protein-protein docking algorithms use the Fast Fourier Transform (FFT) technique to sample the six-dimensional translational and rotational space. Scoring functions including shape complementarity, electrostatics, and desolvation are usually exploited in ranking the docking conformations. While these rigid-body docking methods provide good performance in bound docking, using unbound structures as input frequently leads to a high number of false positive hits. For the purpose of better selecting correct docking conformations, we structurally cluster the docking decoys generated by four widely-used FFT-based protein-protein docking methods. In all cases, the selection based on cluster size outperforms the ranking based on the inherent scoring function. If we cluster decoys from different servers together, only marginal improvement is obtained in comparison with clustering decoys from the best individual server. A collection of multiple decoy sets of comparable quality will be the key to improve the clustering result from meta-docking servers.  相似文献   

19.
Martin O  Schomburg D 《Proteins》2008,70(4):1367-1378
Biological systems and processes rely on a complex network of molecular interactions. While the association of biological macromolecules is a fundamental biochemical phenomenon crucial for the understanding of complex living systems, protein-protein docking methods aim for the computational prediction of protein complexes from individual subunits. Docking algorithms generally produce large numbers of putative protein complexes with only few of these conformations resembling the native complex structure within an acceptable degree of structural similarity. A major challenge in the field of docking is to extract near-native structure(s) out of the large pool of solutions, the so called scoring or ranking problem. A series of structural, chemical, biological and physical properties are used in this work to classify docked protein-protein complexes. These properties include specialized energy functions, evolutionary relationship, class specific residue interface propensities, gap volume, buried surface area, empiric pair potentials on residue and atom level as well as measures for the tightness of fit. Efficient comprehensive scoring functions have been developed using probabilistic Support Vector Machines in combination with this array of properties on the largest currently available protein-protein docking benchmark. The established classifiers are shown to be specific for certain types of protein-protein complexes and are able to detect near-native complex conformations from large sets of decoys with high sensitivity. Using classification probabilities the ranking of near-native structures was drastically improved, leading to a significant enrichment of near-native complex conformations within the top ranks. It could be shown that the developed schemes outperform five other previously published scoring functions.  相似文献   

20.
We present here an extended protein-RNA docking benchmark composed of 71 test cases in which the coordinates of the interacting protein and RNA molecules are available from experimental structures, plus an additional set of 35 cases in which at least one of the interacting subunits is modeled by homology. All cases in the experimental set have available unbound protein structure, and include five cases with available unbound RNA structure, four cases with a pseudo-unbound RNA structure, and 62 cases with the bound RNA form. The additional set of modeling cases comprises five unbound-model, eight model-unbound, 19 model-bound, and three model-model protein-RNA cases. The benchmark covers all major functional categories and contains cases with different degrees of difficulty for docking, as far as protein and RNA flexibility is concerned. The main objective of this benchmark is to foster the development of protein-RNA docking algorithms and to contribute to the better understanding and prediction of protein-RNA interactions. The benchmark is freely available at http://life.bsc.es/pid/protein-rna-benchmark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号