首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
Gene selection via the BAHSIC family of algorithms   总被引:1,自引:0,他引:1  
MOTIVATION: Identifying significant genes among thousands of sequences on a microarray is a central challenge for cancer research in bioinformatics. The ultimate goal is to detect the genes that are involved in disease outbreak and progression. A multitude of methods have been proposed for this task of feature selection, yet the selected gene lists differ greatly between different methods. To accomplish biologically meaningful gene selection from microarray data, we have to understand the theoretical connections and the differences between these methods. In this article, we define a kernel-based framework for feature selection based on the Hilbert-Schmidt independence criterion and backward elimination, called BAHSIC. We show that several well-known feature selectors are instances of BAHSIC, thereby clarifying their relationship. Furthermore, by choosing a different kernel, BAHSIC allows us to easily define novel feature selection algorithms. As a further advantage, feature selection via BAHSIC works directly on multiclass problems. RESULTS: In a broad experimental evaluation, the members of the BAHSIC family reach high levels of accuracy and robustness when compared to other feature selection techniques. Experiments show that features selected with a linear kernel provide the best classification performance in general, but if strong non-linearities are present in the data then non-linear kernels can be more suitable. AVAILABILITY: Accompanying homepage is http://www.dbs.ifi.lmu.de/~borgward/BAHSIC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

2.
MOTIVATION: Protein expression profiling for differences indicative of early cancer holds promise for improving diagnostics. Due to their high dimensionality, statistical analysis of proteomic data from mass spectrometers is challenging in many aspects such as dimension reduction, feature subset selection as well as construction of classification rules. Search of an optimal feature subset, commonly known as the feature subset selection (FSS) problem, is an important step towards disease classification/diagnostics with biomarkers. METHODS: We develop a parsimonious threshold-independent feature selection (PTIFS) method based on the concept of area under the curve (AUC) of the receiver operating characteristic (ROC). To reduce computational complexity to a manageable level, we use a sigmoid approximation to the empirical AUC as the criterion function. Starting from an anchor feature, the PTIFS method selects a feature subset through an iterative updating algorithm. Highly correlated features that have similar discriminating power are precluded from being selected simultaneously. The classification rule is then determined from the resulting feature subset. RESULTS: The performance of the proposed approach is investigated by extensive simulation studies, and by applying the method to two mass spectrometry data sets of prostate cancer and of liver cancer. We compare the new approach with the threshold gradient descent regularization (TGDR) method. The results show that our method can achieve comparable performance to that of the TGDR method in terms of disease classification, but with fewer features selected. AVAILABILITY: Supplementary Material and the PTIFS implementations are available at http://staff.ustc.edu.cn/~ynyang/PTIFS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

3.
癌症的早期诊断能够显著提高癌症患者的存活率,在肝细胞癌患者中这种情况更加明显。机器学习是癌症分类中的有效工具。如何在复杂和高维的癌症数据集中,选择出低维度、高分类精度的特征子集是癌症分类的难题。本文提出了一种二阶段的特征选择方法SC-BPSO:通过组合Spearman相关系数和卡方独立检验作为过滤器的评价函数,设计了一种新型的过滤器方法——SC过滤器,再组合SC过滤器方法和基于二进制粒子群算法(BPSO)的包裹器方法,从而实现两阶段的特征选择。并应用在高维数据的癌症分类问题中,区分正常样本和肝细胞癌样本。首先,对来自美国国家生物信息中心(NCBI)和欧洲生物信息研究所(EBI)的130个肝组织microRNA序列数据(64肝细胞癌,66正常肝组织)进行预处理,使用MiRME算法从原始序列文件中提取microRNA的表达量、编辑水平和编辑后表达量3类特征。然后,调整SC-BPSO算法在肝细胞癌分类场景中的参数,选择出关键特征子集。最后,建立分类模型,预测结果,并与信息增益过滤器、信息增益率过滤器、BPSO包裹器特征选择算法选出的特征子集,使用相同参数的随机森林、支持向量机、决策树、KNN四种分类器分类,对比分类结果。使用SC-BPSO算法选择出的特征子集,分类准确率高达98.4%。研究结果表明,与另外3个特征选择算法相比,SC-BPSO算法能有效地找到尺寸较小和精度更高的特征子集。这对于少量样本高维数据的癌症分类问题可能具有重要意义。  相似文献   

4.
Statistical models are simple mathematical rules derived from empirical data describing the association between an outcome and several explanatory variables. In a typical modeling situation statistical analysis often involves a large number of potential explanatory variables and frequently only partial subject-matter knowledge is available. Therefore, selecting the most suitable variables for a model in an objective and practical manner is usually a non-trivial task. We briefly revisit the purposeful variable selection procedure suggested by Hosmer and Lemeshow which combines significance and change-in-estimate criteria for variable selection and critically discuss the change-in-estimate criterion. We show that using a significance-based threshold for the change-in-estimate criterion reduces to a simple significance-based selection of variables, as if the change-in-estimate criterion is not considered at all. Various extensions to the purposeful variable selection procedure are suggested. We propose to use backward elimination augmented with a standardized change-in-estimate criterion on the quantity of interest usually reported and interpreted in a model for variable selection. Augmented backward elimination has been implemented in a SAS macro for linear, logistic and Cox proportional hazards regression. The algorithm and its implementation were evaluated by means of a simulation study. Augmented backward elimination tends to select larger models than backward elimination and approximates the unselected model up to negligible differences in point estimates of the regression coefficients. On average, regression coefficients obtained after applying augmented backward elimination were less biased relative to the coefficients of correctly specified models than after backward elimination. In summary, we propose augmented backward elimination as a reproducible variable selection algorithm that gives the analyst more flexibility in adopting model selection to a specific statistical modeling situation.  相似文献   

5.
Although metastasis is the principal cause of death cause for colorectal cancer (CRC) patients, the molecular mechanisms underlying CRC metastasis are still not fully understood. In an attempt to identify metastasis-related genes in CRC, we obtained gene expression profiles of 55 early stage primary CRCs, 56 late stage primary CRCs, and 34 metastatic CRCs from the expression project in Oncology (http://www.intgen.org/expo/). We developed a novel gene selection algorithm (SVM-T-RFE), which extends support vector machine recursive feature elimination (SVM-RFE) algorithm by incorporating T-statistic. We achieved highest classification accuracy (100%) with smaller gene subsets (10 and 6, respectively), when classifying between early and late stage primary CRCs, as well as between metastatic CRCs and late stage primary CRCs. We also compared the performance of SVM-T-RFE and SVM-RFE gene selection algorithms on another large-scale CRC dataset and the five public microarray datasets. SVM-T-RFE bestowed SVM-RFE algorithm in identifying more differentially expressed genes, and achieving highest prediction accuracy using equal or smaller number of selected genes. A fraction of selected genes have been reported to be associated with CRC development or metastasis.  相似文献   

6.
Robust feature selection for microarray data based on multicriterion fusion   总被引:1,自引:0,他引:1  
Feature selection often aims to select a compact feature subset to build a pattern classifier with reduced complexity, so as to achieve improved classification performance. From the perspective of pattern analysis, producing stable or robust solution is also a desired property of a feature selection algorithm. However, the issue of robustness is often overlooked in feature selection. In this study, we analyze the robustness issue existing in feature selection for high-dimensional and small-sized gene-expression data, and propose to improve robustness of feature selection algorithm by using multiple feature selection evaluation criteria. Based on this idea, a multicriterion fusion-based recursive feature elimination (MCF-RFE) algorithm is developed with the goal of improving both classification performance and stability of feature selection results. Experimental studies on five gene-expression data sets show that the MCF-RFE algorithm outperforms the commonly used benchmark feature selection algorithm SVM-RFE.  相似文献   

7.
In this paper, EEG signals of 20 schizophrenic patients and 20 age-matched control participants are analyzed with the objective of determining the more informative channels and finally distinguishing the two groups. For each case, 22 channels of EEG were recorded. A two-stage feature selection algorithm is designed, such that, the more informative channels are first selected to enhance the discriminative information. Two methods, bidirectional search and plus-L minus-R (LRS) techniques are employed to select these informative channels. The interesting point is that most of selected channels are located in the temporal lobes (containing the limbic system) that confirm the neuro-phychological differences in these areas between the schizophrenic and normal participants. After channel selection, genetic algorithm (GA) is employed to select the best features from the selected channels. In this case, in addition to elimination of the less informative channels, the redundant and less discriminant features are also eliminated. A computationally fast algorithm with excellent classification results is obtained. Implementation of this efficient approach involves several features including autoregressive (AR) model parameters, band power, fractal dimension and wavelet energy. To test the performance of the final subset of features, classifiers including linear discriminant analysis (LDA) and support vector machine (SVM) are employed to classify the reduced feature set of the two groups. Using the bidirectional search for channel selection, a classification accuracy of 84.62% and 99.38% is obtained for LDA and SVM, respectively. Using the LRS technique for channel selection, a classification accuracy of 88.23% and 99.54% is also obtained for LDA and SVM, respectively. Finally, the results are compared and contrasted with two well-known methods namely, the single-stage feature selection (evolutionary feature selection) and principal component analysis (PCA)-based feature selection. The results show improved accuracy of classification in relatively low computational time with the two-stage feature selection.  相似文献   

8.
9.
MOTIVATION: The increasing use of DNA microarray-based tumor gene expression profiles for cancer diagnosis requires mathematical methods with high accuracy for solving clustering, feature selection and classification problems of gene expression data. RESULTS: New algorithms are developed for solving clustering, feature selection and classification problems of gene expression data. The clustering algorithm is based on optimization techniques and allows the calculation of clusters step-by-step. This approach allows us to find as many clusters as a data set contains with respect to some tolerance. Feature selection is crucial for a gene expression database. Our feature selection algorithm is based on calculating overlaps of different genes. The database used, contains over 16 000 genes and this number is considerably reduced by feature selection. We propose a classification algorithm where each tissue sample is considered as the center of a cluster which is a ball. The results of numerical experiments confirm that the classification algorithm in combination with the feature selection algorithm perform slightly better than the published results for multi-class classifiers based on support vector machines for this data set. AVAILABILITY: Available on request from the authors.  相似文献   

10.
Classification of gene microarrays by penalized logistic regression   总被引:2,自引:0,他引:2  
Classification of patient samples is an important aspect of cancer diagnosis and treatment. The support vector machine (SVM) has been successfully applied to microarray cancer diagnosis problems. However, one weakness of the SVM is that given a tumor sample, it only predicts a cancer class label but does not provide any estimate of the underlying probability. We propose penalized logistic regression (PLR) as an alternative to the SVM for the microarray cancer diagnosis problem. We show that when using the same set of genes, PLR and the SVM perform similarly in cancer classification, but PLR has the advantage of additionally providing an estimate of the underlying probability. Often a primary goal in microarray cancer diagnosis is to identify the genes responsible for the classification, rather than class prediction. We consider two gene selection methods in this paper, univariate ranking (UR) and recursive feature elimination (RFE). Empirical results indicate that PLR combined with RFE tends to select fewer genes than other methods and also performs well in both cross-validation and test samples. A fast algorithm for solving PLR is also described.  相似文献   

11.
《IRBM》2020,41(4):229-239
Feature selection algorithms are the cornerstone of machine learning. By increasing the properties of the samples and samples, the feature selection algorithm selects the significant features. The general name of the methods that perform this function is the feature selection algorithm. The general purpose of feature selection algorithms is to select the most relevant properties of data classes and to increase the classification performance. Thus, we can select features based on their classification performance. In this study, we have developed a feature selection algorithm based on decision support vectors classification performance. The method can work according to two different selection criteria. We tested the classification performances of the features selected with P-Score with three different classifiers. Besides, we assessed P-Score performance with 13 feature selection algorithms in the literature. According to the results of the study, the P-Score feature selection algorithm has been determined as a method which can be used in the field of machine learning.  相似文献   

12.
Extraction of meaningful information from large experimental data sets is a key element in bioinformatics research. One of the challenges is to identify genomic markers in Hepatitis B Virus (HBV) that are associated with HCC (liver cancer) development by comparing the complete genomic sequences of HBV among patients with HCC and those without HCC. In this study, a data mining framework, which includes molecular evolution analysis, clustering, feature selection, classifier learning, and classification, is introduced. Our research group has collected HBV DNA sequences, either genotype B or C, from over 200 patients specifically for this project. In the molecular evolution analysis and clustering, three subgroups have been identified in genotype C and a clustering method has been developed to separate the subgroups. In the feature selection process, potential markers are selected based on Information Gain for further classifier learning. Then, meaningful rules are learned by our algorithm called the Rule Learning, which is based on Evolutionary Algorithm. Also, a new classification method by Nonlinear Integral has been developed. Good performance of this method comes from the use of the fuzzy measure and the relevant nonlinear integral. The nonadditivity of the fuzzy measure reflects the importance of the feature attributes as well as their interactions. These two classifiers give explicit information on the importance of the individual mutated sites and their interactions toward the classification (potential causes of liver cancer in our case). A thorough comparison study of these two methods with existing methods is detailed. For genotype B, genotype C subgroups C1, C2, and C3, important mutation markers (sites) have been found, respectively. These two classification methods have been applied to classify never-seen-before examples for validation. The results show that the classification methods have more than 70 percent accuracy and 80 percent sensitivity for most data sets, which are considered high as an initial scanning method for liver cancer diagnosis.  相似文献   

13.

Background

Proteomic profiling is a rapidly developing technology that may enable early disease screening and diagnosis. Surface-enhanced laser desorption ionization–time of flight mass spectrometry (SELDI-TOF MS) has demonstrated promising results in screening and early detection of many diseases. In particular, it has emerged as a high-throughput tool for detection and differentiation of several cancer types. This review aims to appraise published data on the impact of SELDI-TOF MS in breast cancer.

Methods

A systematic literature search between 1965 and 2009 was conducted using the PubMed, EMBASE, and Cochrane Library databases. Studies covering different aspects of breast cancer proteomic profiling using SELDI-TOF MS technology were critically reviewed by researchers and specialists in the field.

Results

Fourteen key studies involving breast cancer biomarker discovery using SELDI-TOF MS proteomic profiling were identified. The studies differed in their inclusion and exclusion criteria, biologic samples, preparation protocols, arrays used, and analytical settings. Taken together, the numerous studies suggest that SELDI-TOF MS methodology may be used as a fast and robust approach to study the breast cancer proteome and enable the analysis of the correlations between proteomic expression patterns and breast cancer.

Conclusion

SELDI-TOF MS is a promising high-throughput technology with potential applications in breast cancer screening, detection, and prognostication. Further studies are needed to resolve current limitations and facilitate clinical utility.  相似文献   

14.
Because of high dimensionality, machine learning algorithms typically rely on feature selection techniques in order to perform effective classification in microarray gene expression data sets. However, the large number of features compared to the number of samples makes the task of feature selection computationally hard and prone to errors. This paper interprets feature selection as a task of stochastic optimization, where the goal is to select among an exponential number of alternative gene subsets the one expected to return the highest generalization in classification. Blocking is an experimental design strategy which produces similar experimental conditions to compare alternative stochastic configurations in order to be confident that observed differences in accuracy are due to actual differences rather than to fluctuations and noise effects. We propose an original blocking strategy for improving feature selection which aggregates in a paired way the validation outcomes of several learning algorithms to assess a gene subset and compare it to others. This is a novelty with respect to conventional wrappers, which commonly adopt a sole learning algorithm to evaluate the relevance of a given set of variables. The rationale of the approach is that, by increasing the amount of experimental conditions under which we validate a feature subset, we can lessen the problems related to the scarcity of samples and consequently come up with a better selection. The paper shows that the blocking strategy significantly improves the performance of a conventional forward selection for a set of 16 publicly available cancer expression data sets. The experiments involve six different classifiers and show that improvements take place independent of the classification algorithm used after the selection step. Two further validations based on available biological annotation support the claim that blocking strategies in feature selection may improve the accuracy and the quality of the solution. The first validation is based on retrieving PubMEd abstracts associated to the selected genes and matching them to regular expressions describing the biological phenomenon underlying the expression data sets. The biological validation that follows is based on the use of the Bioconductor package GoStats in order to perform Gene Ontology statistical analysis.  相似文献   

15.
Moon  Myungjin  Nakai  Kenta 《BMC genomics》2016,17(13):65-74
Background

Lately, biomarker discovery has become one of the most significant research issues in the biomedical field. Owing to the presence of high-throughput technologies, genomic data, such as microarray data and RNA-seq, have become widely available. Many kinds of feature selection techniques have been applied to retrieve significant biomarkers from these kinds of data. However, they tend to be noisy with high-dimensional features and consist of a small number of samples; thus, conventional feature selection approaches might be problematic in terms of reproducibility.

Results

In this article, we propose a stable feature selection method for high-dimensional datasets. We apply an ensemble L 1 -norm support vector machine to efficiently reduce irrelevant features, considering the stability of features. We define the stability score for each feature by aggregating the ensemble results, and utilize backward feature elimination on a purified feature set based on this score; therefore, it is possible to acquire an optimal set of features for performance without the need to set a specific threshold. The proposed methodology is evaluated by classifying the binary stage of renal clear cell carcinoma with RNA-seq data.

Conclusion

A comparison with established algorithms, i.e., a fast correlation-based filter, random forest, and an ensemble version of an L 2 -norm support vector machine-based recursive feature elimination, enabled us to prove the superior performance of our method in terms of classification as well as stability in general. It is also shown that the proposed approach performs moderately on high-dimensional datasets consisting of a very large number of features and a smaller number of samples. The proposed approach is expected to be applicable to many other researches aimed at biomarker discovery.

  相似文献   

16.
Metabolic markers are the core of metabonomic surveys. Hence selection of differential metabolites is of great importance for either biological or clinical purpose. Here, a feature selection method was developed for complex metabonomic data set. As an effective tool for metabonomics data analysis, support vector machine (SVM) was employed as the basic classifier. To find out meaningful features effectively, support vector machine recursive feature elimination (SVM-RFE) was firstly applied. Then, genetic algorithm (GA) and random forest (RF) which consider the interaction among the metabolites and independent performance of each metabolite in all samples, respectively, were used to obtain more informative metabolic difference and avoid the risk of false positive. A data set from plasma metabonomics study of rat liver diseases developed from hepatitis, cirrhosis to hepatocellular carcinoma was applied for the validation of the method. Besides the good classification results for 3 kinds of liver diseases, 31 important metabolites including lysophosphatidylethanolamine (LPE) C16:0, palmitoylcarnitine, lysophosphatidylethanolamine (LPC) C18:0 were also selected for further studies. A better complementary effect of the three feature selection methods could be seen from the current results. The combinational method also represented more differential metabolites and provided more metabolic information for a “global” understanding of diseases than any single method. Further more, this method is also suitable for other complex biological data sets.  相似文献   

17.

Background  

Recent advances in proteomics technologies such as SELDI-TOF mass spectrometry has shown promise in the detection of early stage cancers. However, dimensionality reduction and classification are considerable challenges in statistical machine learning. We therefore propose a novel approach for dimensionality reduction and tested it using published high-resolution SELDI-TOF data for ovarian cancer.  相似文献   

18.
Identifying the informative genes has always been a major step in microarray data analysis. The complexity of various cancer datasets makes this issue still challenging. In this paper, a novel Bio-inspired Multi-objective algorithm is proposed for gene selection in microarray data classification specifically in the binary domain of feature selection. The presented method extends the traditional Bat Algorithm with refined formulations, effective multi-objective operators, and novel local search strategies employing social learning concepts in designing random walks. A hybrid model using the Fisher criterion is then applied to three widely-used microarray cancer datasets to explore significant biomarkers which reveal the effectiveness of the proposed method for genomic analysis. Experimental results unveil new combinations of informative biomarkers have association with other studies.  相似文献   

19.
Won Y  Song HJ  Kang TW  Kim JJ  Han BD  Lee SW 《Proteomics》2003,3(12):2310-2316
Despite having a relatively low incidence, renal cell carcinoma (RCC) is one of the most lethal urologic cancers. For successful treatment including surgery, early detection is essential. Currently there is no screening method such as biomarker assays for early diagnosis of RCC. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) is a recent technical advance that can be used to identify biomarkers for cancers. In this study, we investigated whether SELDI protein profiling and artificial intelligence analysis of serum could distinguish RCC from healthy persons and other urologic diseases (nonRCC). The SELDI-TOF data was acquired from a total of 36 serum samples with weak cation exchange-2 protein chip arrays and filtered using ProteinChip software. We used a decision tree algorithm c4.5 to classify the three groups of sera. Five proteins were identified with masses of 3900, 4107, 4153, 5352, and 5987 Da. These biomarkers can correctly separate RCC from healthy and nonRCC samples.  相似文献   

20.
蛋白质质谱技术是蛋白质组学的重要研究工具,它被出色地应用于癌症早期诊断等领域,但是蛋白质质谱数据带来的维灾难问题使得降维成为质谱分析的必需的步骤。本文首先将美国国家癌症研究所提供的高分辨率SELDI—TOF卵巢质谱数据进行预处理;然后将质谱数据的特征选择问题转化成基于模拟退火算法的组合优化模型,用基于线性判别式分析的分类错误率和样本后验概率构造待优化目标函数,用基于均匀分布和控制参数的方法构造新解产生器,在退火过程中添加记忆功能;然后用10-fold交叉验证法选择训练和测试样本,用线性判别式分析分类器评价降维后的质谱数据。实验证明,用模拟退火算法选择6个以上特征时,能够将高分辨率SELDI—TOF卵巢质谱数据全部正确分类,说明模拟退火算法可以很好地应用于蛋白质质谱数据的特征选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号