首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate whether DNA damage arising in spermatogenic germ cells can be detected in resultant sperm, we have irradiated murine testis and collected spermatozoa from the vas deferens 45 days later. These cells were derived from spermatogonia present at the time of irradiation. Two forms of irradiation were used, external X-rays (4Gy) and internal auger electrons from contamination of the male mouse with the isotope Indium-114m (1.85MBq), which was localised in the testis. Both forms of irradiation produced a profound fall in vas deferens sperm count and testis weight, Indium-114m being more effective. Using the neutral Comet assay for double strand break detection, significant increases in sperm comet tail length and moment were observed. The levels of damage were similar for both treatments. Care had to be taken during the assay to distinguish between sperm and somatic cells as the proportion of the latter increased after irradiation. We conclude that the comet assay can detect DNA damage in spermatozoa after the in vivo exposure of male germ cells to a known testicular genotoxic agent. The assay may be useful for the assessment of sperm DNA damage (double stranded) associated with male infertility and post-fertilization developmental abnormalities in the offspring.  相似文献   

2.
The role of the tumor suppressor p53 in spermatogenesis   总被引:11,自引:0,他引:11  
The p53 protein appeared to be involved in both spermatogonial cell proliferation and radiation response. During normal spermatogenesis in the mouse, spermatogonia do not express p53, as analyzed by immunohistochemistry. However, after a dose of 4 Gy of X-rays, a distinct p53 staining was present in spermatogonia, suggesting that, in contrast to other reports, p53 does have a role in spermatogonia. To determine the possible role of p53 in spermatogonia, histological analysis was performed in testes of both p53 knock out C57BL/6 and FvB mice. The results indicate that p53 is an important factor in normal spermatogonial cell production as well as in the regulation of apoptosis after DNA damage. First, p53 knock out mouse testes contained about 50% higher numbers of A1 spermatogonia, indicating that the production of differentiating type spermatogonia by the undifferentiated spermatogonia is enhanced in these mice. Second, 10 days after a dose of 5 Gy of X-rays, in the p53 knock out testes, increased numbers of giant sized spermatogonial stem cells were found, indicating disturbance of the apoptotic process in these cells. Third, in the p53 knock out testis, the differentiating A2-B spermatogonia are more radioresistant compared to their wild-type controls, indicating that p53 is partly indispensable in the removal of lethally irradiated differentiating type spermatogonia. In accordance with our immunohistochemical data, Western analysis showed that levels of p53 are increased in total adult testis lysates after irradiation. These data show that p53 is important in the regulation of cell production during normal spermatogenesis either by regulation of cell proliferation or, more likely, by regulating the apoptotic process in spermatogonia. Furthermore, after irradiation, p53 is important in the removal of lethally damaged spermatogonia.  相似文献   

3.
Baulch JE  Li MW  Raabe OG 《Mutation research》2007,616(1-2):34-45
The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1Gy, attenuated (137)Cs gamma rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F(3) descendants that were based upon the irradiated F(0) sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect.  相似文献   

4.
The advantage of using the tobacco (Nicotiana tabacum var. xanthi) mutagenicity assay is the ability to analyze and compare on the same plants under identical treatment conditions both the induced acute DNA damage in somatic cells as measured by the Comet assay and the yield of induced leaf somatic mutations. Gamma-irradiation of tobacco seedlings induced a dose-dependent increase in somatic mutations from 0.5 (control) to 240 per leaf (10Gy). The increased yield of somatic mutations was highly correlated (r = 0.996) with the increased DNA damage measured by the Comet assay immediately after irradiation. With increased dose of gamma-irradiation, the averaged median tail moment values ( +/- S.E.) significantly increased from 1.08 +/- 0.10 (control) to 20.26 +/- 1.61 microm (10Gy). Nuclei isolated from leaves 24h after irradiation expressed tail moment values that were not significantly different from the control (2.08 +/- 0.11). Thus a complete repair of DNA damage induced by gamma-irradiation and measurable by the Comet assay was observed, whereas the yield of somatic mutations increased in relation to the radiation dose. Data on the kinetics of DNA repair and of DNA damage induced by gamma-radiation on isolated tobacco nuclei, and on nuclei isolated from irradiated leaves and roots are presented.  相似文献   

5.
To evaluate whether DNA alterations in mature spermatozoa could stem from DNA damage induced in immature germ cells, testis cells and spermatozoa were analyzed by the comet assay and by the sperm chromatin structure assay 14, 45 and 100 days after in vivo X irradiation of the testes. These times were selected, according to the mouse seminiferous epithelium cycle, to follow the DNA damage induced in different germ cell compartments. The cytotoxic action was assessed by DNA flow cytometric analysis of testicular cells. A dose-dependent increase of DNA damage in testis cells was observed 14 days after irradiation, whereas mature sperm cells were not affected. On the other hand, an increase in DNA strand breaks was seen in spermatozoa 45 days after treatment. DNA damage returned to the control levels 100 days after irradiation. The methods used to evaluate DNA damage gave comparable results, emphasizing the correlation between DNA fragmentation and susceptibility of sperm chromatin to denaturation. Both techniques showed the high radiosensitivity of differentiating spermatogonia. The overall results showed that DNA damage induced in pre-meiotic germ cells is detectable in primary spermatocytes and is still present in mature spermatozoa.  相似文献   

6.
To ensure the high-fidelity transmission by reproductive cells of genetic information from generation to generation, cells have evolved surveillance systems to eliminate genomic lesions by inducing cell suicide and/or DNA repair. In this report, gamma-ray-induced cell death was investigated using the medaka fish, Oryzias latipes, because of the ease with which the differentiation stages of its spermatogenic cells can be identified. After 4.75 Gy gamma irradiation, the maximum rate of death of spermatogonial stem cells was observed at 18 h, and that of differentiating spermatogonia was at 12 h, followed by a peak in the extent of DNA fragmentation detected by the TUNEL assay. Dose-response curves for the death rate showed an obvious increase in the death rate for early-differentiating spermatogonia even after 0.11 Gy irradiation, whereas there were no such increases for spermatogonial stem cells and late-differentiating spermatogonia. In the male germ cells of this fish, the stage during spermatogenesis most sensitive to radiation-induced cell death is in early-differentiating spermatogonia, the immediate descendants of the stem cells. These spermatogonia may have a rigorous surveillance system for genomic lesions induced in spermatogonial stem cells.  相似文献   

7.
The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668Gy/min between 0 and 4 degrees C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2-8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (r(TM)=0.999 and r(TL)=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans.  相似文献   

8.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0-1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

9.
10.
The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668 Gy/min between 0 and 4°C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2–8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (rTM=0.999 and rTL=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans.  相似文献   

11.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

12.
The goal of study was to evaluate DNA damage in rat's renal, liver and brain cells after in vivo exposure to radiofrequency/microwave (Rf/Mw) radiation of cellular phone frequencies range. To determine DNA damage, a single cell gel electrophoresis/comet assay was used. Wistar rats (male, 12 week old, approximate body weight 350 g) (N = 9) were exposed to the carrier frequency of 915 MHz with Global System Mobile signal modulation (GSM), power density of 2.4 W/m2, whole body average specific absorption rate SAR of 0.6 W/kg. The animals were irradiated for one hour/day, seven days/week during two weeks period. The exposure set-up was Gigahertz Transversal Electromagnetic Mode Cell (GTEM--cell). Sham irradiated controls (N = 9) were apart of the study. The body temperature was measured before and after exposure. There were no differences in temperature in between control and treated animals. Comet assay parameters such as the tail length and tail intensity were evaluated. In comparison with tail length in controls (13.5 +/- 0.7 microm), the tail was slightly elongated in brain cells of irradiated animals (14.0 +/- 0.3 microm). The tail length obtained for liver (14.5 +/- 0.3 microm) and kidney (13.9 +/- 0.5 microm) homogenates notably differs in comparison with matched sham controls (13.6 +/- 0.3 microm) and (12.9 +/- 0.9 microm). Differences in tail intensity between control and exposed animals were not significant. The results of this study suggest that, under the experimental conditions applied, repeated 915 MHz irradiation could be a cause of DNA breaks in renal and liver cells, but not affect the cell genome at the higher extent compared to the basal damage.  相似文献   

13.
14.
The aim of this study was to assess the effects of 2-weeks’ X-ray and/or nonylphenol (NP) exposure on male mice’s sperm count and quality. Pzh:SFIS mice were exposed to X-rays (0.05 Gy, 0.10 Gy, 0.20 Gy) or to nonylphenol (25 mg/kg bw, 50 mg/kg bw, 100 mg/kg bw) or to both agents (0.05 Gy + 25 mg/kg bw NP, 0.10 Gy + 50 mg/kg bw NP). At 24 h and 5 weeks after the end of exposure the sperm count, morphology and frequency of DNA damage in the male germ cells were estimated. Each agent alone diminished sperm count and morphology. The dose of 0.05 Gy of X-rays decreased the frequency of DNA damage. Combined exposure to lower doses of both agents significantly improved sperm morphology and decreased the level of DNA damage compared to one agent alone. Combined exposure to higher doses reduced the frequency of DNA damage compared to the effect of the appropriate dose of NP. Results of combined exposure to low doses of both agents suggest that 0.05 Gy of X-rays stimulate the DNA damagecontrol system and in consequence repair of DNA caused by X-rays and NP. It may be correlated with increased antioxidant capacity.  相似文献   

15.
A sex-linked recessive lethal mutation assay was performed in Drosophila melanogaster using immature spermatocytes and spermatogonia irradiated with X rays at a high or low dose rate. The mutation frequency in the sperm irradiated with a low dose at a low dose rate was significantly lower than that in the sham-irradiated group, whereas irradiation with a high dose resulted in a significant increase in the mutation frequency. It was obvious that the dose-response relationship was not linear, but rather was U-shaped. When mutant germ cells defective in DNA excision repair were used instead of wild-type cells, low-dose irradiation at a low dose rate did not reduce the mutation frequency. These observations suggest that error-free DNA repair functions were activated by low dose of low-dose-rate radiation and that this repaired spontaneous DNA damage rather than the X-ray-induced damage, thus producing a practical threshold.  相似文献   

16.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   

17.
The potential and limitations of applying extrapolation factors (EFs) to the results of animal studies to predict effects of toxic agents on human male fertility were evaluated using radiation data. The EF is the ratio of the dose to produce a given effect in the mouse to that necessary to produce the same effect in man. Sperm counts in mouse testes were compared to those in the ejaculates of human males (D. K. Clifton and W. J. Bremner, J. Androl. 4, 387-392 (1981)) at several different times after irradiation. EFs of between 2.6 and 7 were obtained at the time when minimum counts occur. However, it must be noted that the sperm being measured arose from different cell types: differentiating spermatogonia in the mouse vs stem spermatogonia in man. Sperm counts performed at times at which the sperm develop from irradiated stem cells in both species yielded EFs between 11 and 44. However, if sufficient time was allowed for maximum recovery in both species, the EF was less than 1.7. These results indicate that man appears to be much more sensitive than the mouse to the testicular effects of irradiation at 2 to 9 months postexposure, but both species are comparable in their sensitivity to irreversible damage. The use of EFs may be appropriate, but since the EF is very dependent on the time at which the comparison was made, different values must be used for prompt and permanent testicular injury.  相似文献   

18.
The most radiation-sensitive cells in the testis are B and intermediate spermatogonia. We have used a histological scoring technique to compare three neutron beams of different mean energies (1 MeV at the ECN, Petten, 2.3 MeV at the Gray Laboratory, Northwood, and 5.6 MeV at the Oncological Centre, Krakow). CBA inbred mice, 14-20 weeks old, were exposed to whole-body irradiation with single doses of either X-rays (0.1-1 Gy) or neutrons (0.2-0.25 Gy). Relative biological effectiveness values, calculated at the level of 50 per cent reduction in survival of B spermatogonia, were 5.7 at the ECN, Petten, 4.6 at the Gray Laboratory and 3.0 at the Oncological Centre in Krakow. The Do value for the B spermatogonia after X-rays was 0.34 +/- 0.02 Gy when the data from the three centres were combined. Do values for neutrons for the examined spermatogonia were 0.08 Gy, 0.09 Gy and 0.11 Gy at the ECN, Petten, the Gray Laboratory and the Oncological Centre, respectively.  相似文献   

19.
Among various environmental genotoxins, ionizing radiation has received special attention because of its mutagenic, carcinogenic and teratogenic potential. In this context and considering the scarcity of literature data, the objective of the present study was to evaluate the effect of 90Sr beta-radiation on human cells. Blood cells from five healthy donors were irradiated in vitro with doses of 0.2-5.0Gy from a 90Sr source (0.2Gy/min) and processed for chromosome aberration analysis and for comet assay. The cytogenetic results showed that the most frequently found aberration types were acentric fragments, double minutes and dicentrics. The alpha and beta coefficients of the linear-quadratic model, that best fitted the data obtained, showed that 90Sr beta-radiation was less efficient in inducing chromosome aberrations than other types of low linear energy transfer (LET) radiation such as 3H beta-particles, 60Co gamma-rays, 137Cs and 192Ir and X-rays. Apparently, 90Sr beta-radiation in the dose range investigated had no effect on the modal chromosome number of irradiated cells or on cell cycle kinetics. Concerning the comet assay, there was an increase in DNA migration as a function of radiation dose as evaluated by an image analysis system (tail moment) or by visual classification (DNA damage). The dose-response relation adequately fitted the non-linear regression model. In contrast to the cytogenetic data, 90Sr beta-radiation induced more DNA damage than 60Co gamma-radiation when the material was analyzed immediately after exposures. A possible influence of selective death of cells damaged by radiation was suggested.  相似文献   

20.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号