首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Rabbit cardiac muscle sarcoplasmic reticulum (SR) was isolated and separated into ryanodine-sensitive and-insensitive fractions (L.R. Jones and S.E. Cala,J. Biol. Chem. 256:11809–11818, 1981). Vesicles of cardiac SR were incorporated into planar phospholipid bilayers by fusion and the channel activity of the membrane studied under voltage-clamp conditions (C. Miller,J. Membrane Biol. 40: 1–23, 1978). Both fractions contain a monovalent cation-selective three-state channel. In the presence of 75mm K2SO4, the fully open state () conductance of this channel is 157.2±30 pS and the sub-state () conductance is 100.7±21 pS. Both open states display the same selectivity sequence for monovalent cations, i.e. K+>NH 4 + >Rb+>Na+>Li+ and may be blocked by the skeletal muscle relaxants decamethonium and hexamethonium. Block occurs when the compounds are added to either side of the membrane. The properties of the cardiac SR cation channel are compared with those of the previously reported monovalent cation-selective channels of mammalian and amphibian skeletal muscle SR.  相似文献   

2.
In order to study the conductances of the Sarcoplasmic Reticulum (SR) membrane, microsomal fractions from cardiac SR were isolated by differential and sucrose gradient centrifugations and fused into planar lipid bilayers (PLB) made of phospholipids. Using either KCl or K-gluconate solutions, a large conducting K+ selective channel was characterized by its ohmic conductance (152 pS in 150 mM K+), and the presence of short and long lasting subconducting states. Its open probability Po increased with depolarizing voltages, thus supporting the idea that this channel might allow counter-charge movements of monovalent cations during rapid SR Ca2+ release. An heterogeneity in the kinetic behavior of this channel would suggest that the cardiac SR K+ channels might be regulated by cytoplasmic, luminal, or intra SR membrane biochemical mechanisms. Since the behavior was not modified by variations of [Ca2+] nor by the addition of soluble metabolites such as ATP, GTP, cAMP, cGMP, nor by phosphorylation conditions on both sides of the PLB, a specific interaction with a SR membrane component is postulated. Another cation selective channel was studied in asymmetric Ca2+, Ba2+ or Mg2+-HEPES buffers. This channel displayed large conductance values for the above divalent cations 90, 100, and 40 pS, respectively. This channel was activated by µM Ca2+ while its Ca2+ sensitivity was potentiated by millimolar ATP. However Mg2+ and calmodulin modulated its gating behavior. Ca2+ releasing drugs such as caffeine and ryanodine increased its Po. All these features are characteristics of the SR Ca2+ release channel. The ryanodine receptor which has been purified and reconstituted into PLB, may form a cation selective pathway. This channel displays all the regulatory sites of the native cardiac SR Ca2+ release channel. However, when NA was used as charge carrier, multiple subconducting states were observed. In conclusion, the reconstitution experiments have yield a great deal of informations about the biochemical and biophysical events that may regulated the ionic flux across the SR membrane.  相似文献   

3.
Summary The purified ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) membrane functions as a calcium-activated cation-selective channel under voltage-clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effects of the tetra-alkyl ammonium (TAA) cations, (C n H2n+1)4N+ and the trimethyl ammonium cations, ethyltrimethyl ammonium and propyltrimethyl ammonium, on potassium conductance through the receptor channel. Small TAA cations (n = 1–3) and the trimethyl ammonium derivatives act as asymmetric, voltage-dependent blockers of potassium current. Quantitative analysis of the voltage dependence of block indicates that the conduction pathway of the sheep cardiac SR ryanodine receptor channel contains two distinct sites for the interaction of these small organic cations. Sites are located at approximately 50% for tetramethyl ammonium (TMA +) and 90% for tetraethyl ammonium (TEA+) and tetrapropyl ammonium (TPrA+) of the voltage drop across the channel from the cytosolic face of the protein. The chemical substitution of an ethyl or propyl group for one of the methyl groups in TMA+ increases the voltage dependence of block to a level similar to that of TEA + and TPrA+. The zero-voltage dissociation constant (K b(0)) falls with the increasing number of methyl and methylene groups for those blockers acting 90% of the way across the voltage drop. This is interpreted as suggesting a hydrophobic binding site at this point in the conduction pathway. The degree of block increases as the concentration of small TAA cations is raised. The concentration dependence of tetraethyl ammonium block indicates that the cation interacts with a single site within the conduction pathway with a K m of 9.8±1.7 mm (mean±sd) at 40 mV. Larger TAA cations (n = 4–5) do not induce voltage-dependent block of potassium current of the form seen with the smaller TAA cations. These data support the contention that the sheep cardiac SR ryanodine receptor channel may be occupied by at most one ion at a time and suggest that a large proportion of the voltage drop falls over a relatively wide region of the conduction pathway.This work was supported by funds from the Medical Research Council and the British Heart Foundation. We would like to thank Richard Montgomery for his considerable help with the chemical synthesis. We are grateful to Drs. John Chambers, Nick Price and staff for showing us the intricacies of NMR spectroscopy.  相似文献   

4.
We have characterized a voltage-sensitive chloride channel from cardiac sarcoplasmic reticulum (SR) following reconstitution of porcine heart SR into planar lipid bilayers. In 250 mm KCl, the channel had a main conductance level of 130 pS and exhibited two substrates of 61 and 154 pS. The channel was very selective for Cl over K+ or Na+ ( and ). It was permeable to several anions and displayed the following sequence of anion permeability: SCN > I > NO 3 Br > Cl > f > HCOO. Single-channel conductance saturated with increasing Cl concentrations (K m= 900 mm and max = 488 pS). Channel activity was voltage dependent, with an open probability ranging from 1.0 around 0 mV to 0.5 at +80 mV. From –20 to +80 mV, channel gating was time-independent. However, at voltages below –40 mV the channel entered a long-lasting closed state. Mean open times varied with voltage, from 340 msec at –20 mV to 6 msec at +80 mV, whereas closed times were unaffected. The channel was not Ca2+-dependent. Channel activity was blocked by disulfonic stilbenes, arylaminobenzoates, zinc, and cadmium. Single-channel conductance was sensitive to trans pH, ranging from 190 pS at pH 5.5 to 60 pS at pH 9.0. These characteristics are different from those previously described for Cl channels from skeletal or cardiac muscle SR.We thank Dr. Barry Pallotta for help with open and closed intervals analysis and Dr. Gerhard Meissner for his suggestions for the preparation of cardiac sarcoplasmic reticulum membranes. This work was supported by a grant from the National Institutes of Health to R.L.R. and a Student Grant-in-Aid from the American Heart Association, North Carolina affiliate to C.T. R.L.R. is an Established Investigator of the American Heart Association.  相似文献   

5.
Summary The properties of calcium-release channels of sheep cardiac muscle junctional sarcoplasmic reticulum (SR), have been investigated under voltage-clamp conditions following the fusion of isolated membrane vesicles with planar phospholipid bilayers. In the presence of activating calcium on the cytosolic side of the membrane, additions of the benzimidazole derivative sulmazole (AR-L 115BS) increased the open probability (P a ) of the channel reaching saturating values of 1.0 at 3mm sulmazole. The drug did not affect single-channel conductance and activation was readily reversible. Analysis of channel open and closed lifetimes suggested that low concentrations of sulmazole (0.1mm) may sensitize the channel to activating calcium, while at higher concentrations (1mm and above), calcium and sulmazole act synergistically to produce a unique gating scheme for the channel. Millimolar concentrations of sulmazole also stimulate a degree of channel opening at subactivating (60pm) calcium concentrations. Openings occurring under these conditions show very different kinetics to those of the calcium-activated channel but have an identical single-channel conductance and are modified by ATP, magnesium, ruthenium red and ryanodine in a similar manner to the calcium-activated channel. The release of calcium from the SR following the activation of the calcium-release channel by sulmazole may contribute to the positive inotropic action of this drug on mammalian cardiac muscle.  相似文献   

6.
Summary This paper presents an experimental study and a theoretical interpretation of the effects of thallous ion on the electrical properties of the cation-selective channel of the sarcoplasmic reticulum (SR channel). The properties of this channel in solutions which do not contain thallous ion are consistent with the predictions of Läuger's theory for singly occupied pores (P. Läuger, 1973,Biochim. Biophys. Acta 311:423–441). However, this theory does not account for SR channel properties in mixtures containing thallous ion. SR channel conductance is less than predicted in mixed salt solutions of thallium with either potassium or ammonium (J. Fox, 1983,Biochim. Biophys. Acta 736:241–245), yet is greater than expected in mixtures of lithium and thallium. In a simple single-ion pore, the ratio of the products of the single-salt binding constants and maximum conductances is equal to the permeability ratio calculated from zero-current potential experiments under near equilibrium conditions. This is not found for the SR channel when thallous ion is present. SR channel properties in the presence of thallous ion can, however, be explained by a model which postulates the existence of two external modulatory sites on the channel, without implying double-occupancy in the permeation pathway. When thallous ion is bound to a modulatory site the maximum conductance of the channel to all permeating ions is altered (thallous included). Two other models (a three-barrier, two-internal-site pore which allows multiple occupancy, and a pore with fluctuating barriers) are discussed, but are found to be unable to fit our conductance data at different concentrations.  相似文献   

7.
The calcium transport mechanism of cardiac sarcoplasmic reticulum (SR) is regulated by a phosphoregulatory mechanism involving the phosphorylation-dephosphorylation of an integral membrane component, termed phospholamban. Phospholamban, a 27,000 Da proteolipid, contains phosphorylation sites for three independent protein kinases: 1) cAMP-dependent, 2) Ca2+-calmodulin-dependent, and 3) Ca2+-phospholipid-dependent. Phosphorylation of phospholamban by any one of these kinases is associated with stimulation of the calcium transport rates in isolated SR vesicles. Dephosphorylation of phosphorylated phospholamban results in the reversal of the stimulatory effects produced by the protein kinases. Studies conducted on perfused hearts have shown that during exposure to beta-adrenergic agents, a good correlation exists between the in situ phosphorylation of phospholamban and the relaxation of the left ventricle. Phosphorylation of phospholamban in situ is also associated with stimulation of calcium transport rates by cardiac SR, similar to in vitro findings. Removal of beta-adrenergic agents results in the reversal of the inotropic response and this is associated with dephosphorylation of phospholamban. These findings indicate that a phospho-regulatory mechanism involving phospholamban may provide at least one of the controls for regulation of the contractile properties of the myocardium.  相似文献   

8.
The thallous ion was found to permeate the cation-selective channel of rabbit sarcoplasmic reticulum and to block current through this channel when present in mixtures with other permeant ions. Channel conductance in pure thallium acetate saturates with increasing concentration, with a maximum limiting conductance of 60 pS. The conductance ratio GK/GTl at 1 M is 3.7, while the permeability ratio is near 0.4 over the concentration range 0.01 to 1 M. Thallium blockade in mixtures can be described by the equation of Neher (Neher, E. (1975) Biochim. Biophys. Acta 401, 540–544).  相似文献   

9.
Summary Rapid mixing-vesicle ion flux and planar lipid bilayer-single channel measurements have shown that a high-conductance, ligand-gated Ca2+ release channel is present in heavy, junctional-derived membrane fractions of skeletal and cardiac muscle sarcoplasmic reticulum. Using the release channel-specific probe, ryanodine, a 30S protein complex composed of polypeptides of Mr 400 000 has been isolated from cardiac and skeletal muscle. Reconstitution of the complex into planar lipid bilayers has revealed a Ca2+ conductance with properties characteristic of the native Ca2+ release channel.  相似文献   

10.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   

11.
Summary An anion channel of sarcoplasmic reticulum vesicle has been incorporated into planar lipid bilayers by means of a fusion method and its basic properties were investigated. Analysis of fusion processes suggested that one SR vesicle contained approximately one anion channel. The conductance of this channel has several substates and shows a flickering behavior. The occupation probability of each substate was voltage dependent, which induced an inward rectification of macroscopic currents. Further, the anion channel was found to have the following properties. (1) The single-channel conductance is about 200 pS at 100mm Cl. (2) The channel does not select among monovalent anions but SO 4 2– hardly permeates through the channel. (3) SO 4 2– added to thecis side (the side to which SR vesicles were added) inhibits Cl current competitively in a voltage-dependent manner. (4) An analysis of this voltage dependence suggests that the binding site of SO 4 2– is located at about 36% of the way across the channel from thecis entrance.  相似文献   

12.
The ability of N-acylethanolamines (pharmacologically active lipid metabolites which accumulate in canine myocardium during experimentally induced infarctions) to alter Ca2+ fluxes in a biological membrane system was studied using sarcoplasmic reticulum vesicles prepared from rabbit skeletal muscle. The effects of two N-acylethanolamines, the N-oleyl and N-lauryl derivatives, were compared to those of the lipophilic drugs, dibucaine and propranolol. The rate and extent of Ca2+ sequestration, Ca2+-Mg2+-ATPase activity and retention time of Ca2+ by the vesicles were all stimulated at low concentrations of the four compounds studied and inhibited at higher concentrations. The stoichiometry between Ca2+-pumping rates and ATPase activity was partially "uncoupled" indicating that both the calcium pump and the membrane permeability were affected by the drugs. However, although all four compounds exhibited the same qualitative behavior, the effects of the two N-acylethanolamines were more pronounced than dibucaine and propranolol and occurred at much lower concentrations. These results suggest that the N-acylethanolamines may have important physiological effects in the myocardium and, at least at lower concentrations, stimulate myocardial contractility by increasing the rate of calcium flux across the sarcoplasmic reticulum.  相似文献   

13.
Congestive heart failure presents a significant medical problem and accumulating evidence indicates that slow relaxation during diastole maybe at least in part be medlated by decreased expression of the gene coding for the Ca2+ ATPase of the sarcoplasmic reticulum (SR). In order to determine if increased expression of the SR Ca2+ ATPase gene leads to alterations in calcium transients and in contractile behavior we constructed transgenic mice overexpressing the SERCA2 gene. Measuring dP/dtmax and dpPdtmin with a 2 French Milar catheter we found a significant Increase in systolic contraction and diastolic relaxation in transgene positive versus transgene negative mice. In addition we constructed adenoviruses overexpressing the gene coding for the Ca2+ ATPase of the sarcoplasmic reticulum. Infacting cardiac myocytes with the adenovirus expressing this transgene led to an accelerated calcium transient. Determining cell shortening and relengthening with a edge detection method indicated that increased expression of the SERCA2 transgene mediated by adenovirus Infection accelerated contractile parameters. In summary increased expression of the SERCA2 transgene leads to an enhancement of cardiac contrectile parameters under in vivo conditions in transgenic mice and in myocytes in cell culture using an adenovirus based approach to increase expression of the SERCAX gene.  相似文献   

14.
Dimer ribbons in the three-dimensional structure of sarcoplasmic reticulum   总被引:3,自引:0,他引:3  
The three-dimensional structure of scallop sarcoplasmic reticulum membranes has been determined from electron micrographs of two classes of stain-filled tubules by helical reconstruction methods. These structures are characterized by dimer ribbons of Ca2+-ATPase molecules running diagonally around the tube wall. Deep right-handed grooves separate the ribbons. The elongated, curved units of the dimer (approximately 95 A long in the radial direction; 60 to 70 A axially, and about 30 A wide) are displaced axially by approximately 34 A and are connected at their outer ends by a bridge running nearly parallel to the tube axis. The monomers make a second contact at their inner ends. Adjacent units with the same orientation form a strong contact that is responsible for the ribbon appearance. Comparison of tubules of different diameter shows that one set of connections between the dimer ribbons is conserved: the inner ends of axially displaced dimers appear to make contact along a left-handed path almost perpendicular to the major grooves. The lipid bilayer cannot be clearly identified. The two-dimensional map obtained from flattened tubules is consistent with the three-dimensional reconstruction in showing dimer ribbons connected by a weak contact across the grooves, strongly resembling the inter-dimer bond observed in three dimensions. The two-dimensional map shows a 2-fold axis relating units of the dimer, but the three-dimensional tubes show a slight axial polarity that may arise from the presence of proteins other than the Ca2+-ATPase.  相似文献   

15.
Summary The effects of various lysophospholipids on the calcium transport activity of sarcoplasmic reticulum (SR) from rabbit skeletal and canine cardiac muscles were examined. The lipids decreased calcium transport activity in both membrane types; the effectiveness being in the order lysoPC > lsyoPS, lysoPG > lysoPE. The maximum inhibition induced by lysoPC, lysoPG and lysoPS was greater than 85% of the normal Ca2+-transport rate. In cardiac SR lysoPE had a maximal inhibition of about 50%. Half maximal inhibition of calcium transport by lysoPC was achieved at 110 nmoles lysoPC/mg SR. At this concentration of lysoPC, the (Ca2+ + Mg2+)-ATPase and Ca2+-uptake activities were inhibited to the same extent (about 60%) in skeletal sarcoplasmic reticulum, while in cardiac sarcoplasmic reticulum, there was less than 20% inhibition of the Ca2+ + Mg2+-ATPase activity. Studies with EGTA-induced passive calcium efflux showed that up to 200 nmoles lysoPC/mg SR did not alter calcium permeability significantly in cardiac sarcoplasmic reticulum. In skeletal muscle membranes the lysophospholipid mediated decrease in calcium uptake correlated well with the increase in passive calcium efflux due to lysophosphatidylcholine. The difference in the lysophospholipid-induced effects on the sarcoplasmic reticulum from the two muscle types probably reflects variations in protein and other membrane components related to the respective calcium transport systems.  相似文献   

16.
Summary Preparations of cardiac sarcoplasmic reticulum (CSR) isolated from the rat by differential centrifugation have been widely used for measuring alterations in intracellular calcium flux in response to metabolic and pharmacologic disruptions. However, the purity of these SR fractions has not been firmly established.Using a combination of differential and linear sucrose gradient centrifugation, we have isolated rat CSR with high specific activity and purity. By SDS-PAGE analysis, the preparation is enriched in a protein (110 kD) of similar size to the Ca2+-ATPase of SR from other sources. Gels stained with the dye Stains All reveal a blue colored 55 kD band, confirming the presence of calsequestrin, the intraluminal low-affinity calcium binding protein of SR. The presence of the transmembrane 53 kD glycoprotein of SR was confirmed by endoglycosidase-H treatment followed by SDS-PAGE and also by a modified Western blotting technique. The rate of calcium uptake in this preparation averages 130 nmol/mg over the first minute of accumulation, approximately 4 times that previously reported for rat CSR. Calcium uptake in our preparation was essentially complete within 5 minutes. Preparations isolated by this method should be of value in future studies measuring alterations in rat CSR function.  相似文献   

17.
A transition in the temperature dependences of Ca2+ accumulation and ATPase activity occurs at 20 ° C in Sarcoplasmic reticulum membranes. The transition is characterized by an abrupt change in the activation energies for the cation transport process and the associated enzyme activities. The difference in activation energies below and above 20 °C appears to be due to changes in the entropy of activation rather than in the free energy of activation. Also, the temperature dependences of spectral parameters of lipophilic spin-labeled probes and protein-bound spin labels exhibit different behaviors on either side of this temperature. Above 20 °C the lipid matrix probed by the labels exhibits a large increase in molecular motion and a decrease in the apparent ordering of lipid alkyl chains. In addition, labels covalently bound to enzymic reactive sites indicate that the motion of protein side-chains is sensitive to this transition. The results are consistent with an order-disorder transition involving the lipid alkyl chains of the Sarcoplasmic membrane, and with a model in which molecular motion, Ca2+ transport and enzyme activity are limited by local viscosity of hydrophobic regions at temperatures below the transition.Another modification of the Sarcoplasmic reticulum membrane occurs between 37 and 40 °C. It appears that at this temperature the processes governing Ca2+ accumulation and ATPase activity are uncoupled, and Ca2+ accumulation is inhibited, while ATPase activity and passive Ca2+ efflux proceed at rapid rates. Parallel transitions of spectroscopic parameters originating from spin labels, covalently bound to the Sarcoplasmic reticulum ATPase, indicate that the uncoupling is due to a thermally-induced protein conformational change.  相似文献   

18.
Identification of estrogenresponsive genes is important to understand the molecular mechanisms of estrogen action. Suppression subtractive hybridization was employed to screen estrogenresponsive genes in chick liver. A single injection of estrogen into 6weekold chick induced upregulation of several known genes encoded for yolk proteins, such as Vitellogenin I and II and very low density lipoprotein II (apo-VLDL II). One novel sequence displayed a dramatic change (3fold increase) in response to estrogen treatment. This cDNA fragment was extended and the resultant sequence was analyzed. Translated amino acid sequence was 90, 88, 83 and 87% identical to the Larginine:glycine amidinotransferase of pig, rat, frog and human, respectively. The sequence has a conservative catalytic site of Larginine:glycine amidinotransferase. The expression pattern of this gene in organs is consistent with previous reports of Larginine:glycine amidinotransferase in chick. Thus, this clone represented the chicken Larginine:glycine amidinotransferase. It appeared that estrogeninduced alteration of arginine:glycine amidinotransferase was not dependent on protein synthesis, because concurrent administration of cycloheximide did not affect the estrogenmediated expression pattern. This is the first study demonstrating that Larginine:glycine amidinotransferase is a target of the estrogen receptor.  相似文献   

19.
A crude preparation of heavy sarcoplasmic reticulum (HSR) was isolated using 1 gram of muscle obtained from swine susceptible to malignant hyperthermia (MH) and from control swine. The caffeine and ATP concentration-dependency of Ca-release was determined using suction filtration with radioisotopic 45Ca as a tracer. Rates of release were determined using a rapid filtration system. Caffeine and ATP-induced Ca-release from MH-susceptible (MHS) HSR occurred at one-tenth the concentration of agonist that was required for control muscle HSR. No differences in rates and amounts of release were observed when agonist concentrations were used that caused maximum release for controls. However, at the threshold concentration of caffeine causing release for control HSR, the MHS HSR released 4-times as much Ca and at 3-times the rate of controls. These findings indicate that increased rates and amounts of Ca-release are due to the hypersensitivity of the Ca-release channel of HSR and that this abnormality can be detected using 1 gram of muscle.  相似文献   

20.
肾上腺髓质素对大鼠损伤性心肌肌浆网功能的改善   总被引:3,自引:0,他引:3  
Li XF  Yang Y  Gao LR  Qi YF  Li ZQ  Tang CS 《生理学报》2001,53(5):364-368
通过观察下述五个指标,评价肾上腺髓质素(adrenomedullin,Adm)对大鼠损伤性心肌肌浆网功能的改善程度左心室压力最大变化速率(±dp/dtmax)、肌浆网钙摄取和释放及钙泵活性.皮下注射异丙肾上腺素(isoproterenol,ISO,69μmol/kg体重)制备大鼠心肌损伤坏死模型.摘取心脏后用Adm灌流,观察左心室压力最大变化速率(±dp/dtmax);制备并提纯心肌肌浆网(sarcoplasmicreticulum,SR)膜,测定SRCa2+摄取和释放速率、SR钙泵活性和钙通道蛋白~3H-ryanodine受体的最大结合量.结果发现,5×10-5mol/LAdm灌流能使ISO损伤的大鼠心脏左室±dp/dtmax分别增加16.9%(2?135±281vs1?980±302)和29.2%(1?375±267vs1?064±355,均P<0.05);SRCa2+摄取和释放率分别增加23.0%(15.0±1.4vs12.2±1.2)和43.5%(6.6±1.0vs4.6±0.6,均P<0.01);SRCa2+-ATPase活性和~3H-ryanodine受体最大结合量(Bmax)分别增加24.2%(P<0.01)和42.2%(P<0.05).提示Adm对ISO诱导的大鼠心肌损伤具有保护作用,其机制可能与Adm增加SRCa2+-ATPase活性、增加~3H-ryanodine所致SRCa2+摄取和释放升高有关.外源性给予Adm对损伤心肌可能具有临床治疗作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号