首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of smooth muscle thin filament was examined by various electron microscopy techniques, with special attention to the mode of caldesmon binding. Chemical cross-linking was positively used to avoid the dissociation of accessory proteins upon dilution. Caldesmon in reconstituted thin filament was observed as fine filamentous projections from thin filament. Native thin filament isolated from smooth muscle showed similarly numerous fine whisker-like projections by all the techniques employed here. Antibody against the amino-terminus of caldesmon labeled the end of such projections indicating the possibility that the amino-terminal myosin binding moiety might stick out from the shaft of the thin filament. Such whiskers are often projected out as a cluster to the same side of native thin filament. Further, we could visualize the assembly of dephosphorylated heavy meromyosin (HMM) with native or reconstituted thin filament forming "nonproductive" complex in the presence of ATP. The association of HMM to the shaft of thin filament was through subfragment-2 moiety, in accordance with biochemical studies. Some HMM particles bound closer to the thin filament shaft, possibly suggesting the presence of the second myosin-binding site on caldesmon. Occasionally two kinds of HMM association as such coexisted at a single site on this filament in tandem. Thus, we constructed a structural model of thin filament. The proposed molecular arrangement is not only compatible with all the biochemical results but also provides additional support for our recent findings (E. Katayoma, G. C. Scott-Woo, and M. Ikebe (1995) J. Biol. Chem. 270, 3919-3925) regarding the capability of caldesmon to induce dephosphorylated myosin filament, which explains the existence of thick filaments in relaxed smooth muscle cells.  相似文献   

2.
Caldesmon inhibits actomyosin ATPase and filament sliding in vitro, and therefore may play a role in modulating smooth and non-muscle motile activities. A bacterially expressed caldesmon fragment, 606C, which consists of the C-terminal 150 amino acids of the intact molecule, possesses the same inhibitory properties as full-length caldesmon and was used in our structural studies to examine caldesmon function. Three-dimensional image reconstruction was carried out from electron micrographs of negatively stained, reconstituted thin filaments consisting of actin and smooth muscle tropomyosin both with and without added 606C. Helically arranged actin monomers and tropomyosin strands were observed in both cases. In the absence of 606C, tropomyosin adopted a position on the inner edge of the outer domain of actin monomers, with an apparent connection to sub-domain 1 of actin. In 606C-containing filaments that inhibited acto-HMM ATPase activity, tropomyosin was found in a different position, in association with the inner domain of actin, away from the majority of strong myosin binding sites. The effect of caldesmon on tropomyosin position therefore differs from that of troponin on skeletal muscle filaments, implying that caldesmon and troponin act by different structural mechanisms.  相似文献   

3.
Calcium ion-regulated thin filaments from vascular smooth muscle.   总被引:1,自引:4,他引:1       下载免费PDF全文
Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g.  相似文献   

4.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

5.
Caldesmon is known to inhibit actomyosin ATPase and filament sliding in vitro, and may play a role in modulating smooth muscle contraction as well as in diverse cellular processes including cytokinesis and exocytosis. However, the structural basis of caldesmon action has not previously been apparent. We have recorded electron microscope images of negatively stained thin filaments containing caldesmon and tropomyosin which were isolated from chicken gizzard smooth muscle in EGTA. Three-dimensional helical reconstructions of these filaments show actin monomers whose bilobed shape and connectivity are very similar to those previously seen in reconstructions of frozen-hydrated skeletal muscle thin filaments. In addition, a continuous thin strand of density follows the long-pitch actin helices, in contact with the inner domain of each actin monomer. Gizzard thin filaments treated with Ca2+/calmodulin, which dissociated caldesmon but not tropomyosin, have also been reconstructed. Under these conditions, reconstructions also reveal a bilobed actin monomer, as well as a continuous surface strand that appears to have moved to a position closer to the outer domain of actin. The strands seen in both EGTA- and Ca2+/calmodulin-treated filaments thus presumably represent tropomyosin. It appears that caldesmon can fix tropomyosin in a particular position on actin in the absence of calcium. An influence of caldesmon on tropomyosin position might, in principle, account for caldesmon's ability to modulate actomyosin interaction in both smooth muscles and non-muscle cells.  相似文献   

6.
Direct evidence that caldesmon is the Ca2+-regulated inhibitory component of native smooth muscle thin filaments is provided by studies using caldesmon-specific antibodies as antagonists. The antibodies reverse caldesmon inhibition of actomyosin ATPase and abolish Ca2+-regulation of native aorta thin filament activation of myosin ATPase. This effect is a result of antibody binding to the caldesmon on the filament thereby inactivating it and not due to antibody-induced caldesmon dissociation from the filament. The antibodies, however, neutralise caldesmon only in systems using skeletal muscle myosin and not in those using smooth muscle myosin; this implies that smooth muscle myosin prevents appropriate antibody binding to caldesmon perhaps because smooth muscle myosin binds to caldesmon thus preventing access of antibody to antigenic sites.  相似文献   

7.
We have developed a technique by which muscle thin filaments are reconstituted from the recombinant troponin components and the native thin filaments. By this technique, the reconstituted troponin complex is exchanged into the native thin filaments in the presence of 20% glycerol and 0.3 M KCl at pH 6.2. More than 90% of endogenous troponin complex was replaced with the recombinant troponin complex. Structural integrity and Ca2+ sensitivity of the reconstituted thin filament prepared by this technique was confirmed by X-ray fiber diffraction measurements and the thin filament-activated myosin subfragment 1 ATPase measurements, respectively.  相似文献   

8.
We have used three different monoclonal antibodies (LCK16, JLH2 and JLF15) to tropomyosin for the localization of tropomyosin molecules within smooth muscle thin filaments. Thin filaments were incubated with monoclonal antibodies and visualized by negative staining electron microscopy. All three monoclonal antibodies caused the aggregation of thin filaments into ordered bundles, which displayed cross-striations with a periodicity of 37 ± 1 nm. In contrast, conventional rabbit antiserum to tropomyosin distorted and aggregated the thin filaments without generating cross-striations. Therefore, monoclonal antibodies to tropomyosin allow us, for the first time, to observe directly the distribution of tropomyosin molecules along the thin filaments of smooth muscle cells. The binding sites of the antibodies to skeletal muscle tropomyosin were examined by decorating tropomyosin paracrystals with monoclonal antibodies. The LCK16 monoclonal antibody binds the narrow band of tropomyosin paracrystals, whereas the JLF15 antibody binds the wide band of tropomyosin paracrystals.  相似文献   

9.
Smooth muscle thin filaments are made up of actin, tropomyosin, caldesmon, and a Ca(2+)-binding protein and their interaction with myosin is Ca(2+)-regulated. We suggested that Ca(2+) regulation by caldesmon and Ca(2+)-calmodulin is achieved by controlling the state of thin filament through a cooperative-allosteric mechanism homologous to troponin-tropomyosin in striated muscles. In the present work, we have tested this hypothesis. We monitored directly the thin filament transition between the ON and OFF state using the excimer fluorescence of pyrene iodoacetamide (PIA)-labeled smooth muscle alphaalpha-tropomyosin homodimers. In steady state fluorescence measurements, myosin subfragment 1 (S1) cooperatively switches the thin filaments to the ON state, and this is exhibited as an increase in the excimer fluorescence. In contrast, caldesmon decreases the excimer fluorescence, indicating a switch of the thin filament to the OFF state. Addition of Ca(2+)-calmodulin increases the excimer fluorescence, indicating a switch of the thin filament to the ON state. The excimer fluorescence was also used to monitor the kinetics of the ON-OFF transition in a stopped-flow apparatus. When ATP induces S1 dissociation from actin-PIA-tropomyosin, the transition to the OFF state is delayed until all S1 molecules are dissociated actin. In contrast, caldesmon switches the thin filament to the OFF state in a cooperative way, and no lag is displayed in the time course of the caldesmon-induced fluorescence decrease. We have also studied caldesmon and Ca(2+)-calmodulin-caldesmon binding to actin-tropomyosin in the ON and OFF states. The results are used to discuss both caldesmon inhibition and Ca(2+)-calmodulin-caldesmon activation of actin-tropomyosin.  相似文献   

10.
Application of the myosin competition test (Lehman, W., and Szent-Gy?rgyi, A. G. (1975) J. Gen. Physiol. 66, 1-30) to chicken gizzard actomyosin indicated that this smooth muscle contains a thin filament-linked regulatory mechanism. Chicken gizzard thin filaments, isolated as described previously (Marston, S. B., and Lehman, W. (1985) Biochem. J. 231, 517-522), consisted almost exclusively of actin, tropomyosin, caldesmon, and an unidentified 32-kilodalton polypeptide in molar ratios of 1:1/6:1/26:1/17, respectively. When reconstituted with phosphorylated gizzard myosin, these thin filaments conferred Ca2+ sensitivity (67.8 +/- 2.1%; n = 5) on the myosin Mg2+-ATPase. On the other hand, no Ca2+ sensitivity of the myosin Mg2+-ATPase was observed when purified gizzard actin or actin plus tropomyosin was reconstituted with phosphorylated gizzard myosin. Native thin filaments were rendered essentially free of caldesmon and the 32-kilodalton polypeptide by extraction with 25 mM MgCl2. When reconstituted with phosphorylated gizzard myosin, caldesmon-free thin filaments and native thin filaments exhibited approximately the same Ca2+ sensitivity (45.1 and 42.7%, respectively). The observed Ca2+ sensitivity appears, therefore, not to be due to caldesmon. Only trace amounts of two Ca2+-binding proteins could be detected in native thin filaments. These were identified as calmodulin (present at a molar ratio to actin of 1:733) and the 20-kilodalton light chain of myosin (present at a molar ratio to actin of 1:270). The Ca2+ sensitivity observed in an in vitro system reconstituted from gizzard thin filaments and either skeletal myosin or phosphorylated gizzard myosin is due, therefore, to calmodulin and/or an unidentified minor protein component of the thin filaments which may be an actin-binding protein involved in regulating actin filament structure in a Ca2+-dependent manner.  相似文献   

11.
Purification of native myosin filaments from muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
Analysis of the structure and function of native thick (myosin-containing) filaments of muscle has been hampered in the past by the difficulty of obtaining a pure preparation. We have developed a simple method for purifying native myosin filaments from muscle filament suspensions. The method involves severing thin (actin-containing) filaments into short segments using a Ca(2+)-insensitive fragment of gelsolin, followed by differential centrifugation to purify the thick filaments. By gel electrophoresis, the purified thick filaments show myosin heavy and light chains together with nonmyosin thick filament components. Contamination with actin is below 3.5%. Electron microscopy demonstrates intact thick filaments, with helical cross-bridge order preserved, and essentially complete removal of thin filaments. The method has been developed for striated muscles but can also be used in a modified form to remove contaminating thin filaments from native smooth muscle myofibrils. Such preparations should be useful for thick filament structural and biochemical studies.  相似文献   

12.
A long helix from the central region of smooth muscle caldesmon.   总被引:2,自引:0,他引:2  
The central region of smooth muscle caldesmon is predicted to form alpha-helices on the basis of its primary structure. We have isolated a fragment (CT54) that contains this region. The hydrodynamic properties and the electron microscopic images suggest that CT54 is an elongated (35 nm), monomeric molecule. The circular dichroic spectrum yields an overall alpha-helical content of 55-58%. These results are consistent with the model that the middle portion of CT54 forms a long stretch of single-stranded alpha-helix. Such a structure, if it in fact exists, is thought to be stabilized by numerous salt bridges between charged residues at positions i and i + 4. The structural characteristics of this fragment not only represent an unusual protein configuration but also provide information about the functional role of caldesmon in smooth muscle contraction.  相似文献   

13.
Phosphorylation of caldesmon in arterial smooth muscle   总被引:5,自引:0,他引:5  
We have isolated caldesmon (Mr = 145,000), by immunoprecipitation, from [32P]orthophosphate-loaded porcine carotid arteries. In resting muscles, caldesmon was phosphorylated to 0.45 mol of PO4/mol protein, while the 20,000-dalton myosin regulatory light chain (LC20) was phosphorylated to less than 0.05 mol/mol. After stimulation by KCl (110 mM) for 75 min and phorbol 12,13-dibutyrate (PDBu, 1 microM) for 60 min, caldesmon phosphorylation levels rose to 0.96 and 1.1 mol/mol, respectively. LC20 phosphorylation increased to 0.49 mol/mol at 1 min of stimulation by KCl and decreased to 0.17 mol/mol at 60 min. With PDBu, phosphate incorporation into LC20 rose only slightly, reaching 0.09 mol/mol after 90 min. Muscles contracted with histamine (10 microM) or ouabain (1 microM) also demonstrated elevated levels of phosphate incorporation into caldesmon. In these muscles, LC20 phosphorylation levels were less than 0.05 mol/mol. Three major phosphopeptides of indistinguishable mobility were identified on maps of caldesmon from resting, KCl-stimulated, and PDBu-stimulated muscles. There was, however, little similarity between the phosphopeptide maps of caldesmon phosphorylated in intact tissue and maps of purified caldesmon phosphorylated in vitro by protein kinase C (Ca2+/phospholipid-dependent enzyme) or Ca2+/calmodulin kinase II.  相似文献   

14.
Regulation of vascular smooth muscle tone by caldesmon.   总被引:14,自引:0,他引:14  
Caldesmon is an actin-binding protein present in smooth muscle cells that also inhibits actin-activated myosin ATPase activity. To assess the possible role of caldesmon in the regulation of smooth contraction, we investigated the effects of synthetic peptides on force directly recorded from single hyperpermeable smooth muscle cells of ferret aorta and portal vein. GS17C, a peptide that contains the residues from Gly651 to Ser667 of the caldesmon sequence plus an added cysteine at the C terminus, binds calmodulin in a Ca(2+)-dependent manner and also binds to F-actin but does not inhibit actomyosin ATPase activity (Zhan, Q., Wong, S.S., and Wang, C.-L.A. (1991) J. Biol. Chem. 266, 21810-21814). In cells in which Ca2+ was clamped at pCa 7.0, GS17C induced a dose-dependent contraction (EC50 = 0.92 microM) in aorta cells, whereas it evoked little or no contraction in portal vein cells. The GS17C-induced contraction in aorta cells was inhibited at higher Ca2+ concentrations (above pCa 6.6) and by pretreatment with calmodulin. Another peptide, C16AA, which contains the residues from Ala594 to Ala609 and does not bind actin or calmodulin, did not induce contraction. Our results strongly suggest that GS17C induces contraction by the displacement of the inhibitory region of endogenous caldesmon and, furthermore, that caldesmon present in these smooth muscle cells regulates contraction by providing a basal resting inhibition of vascular tone.  相似文献   

15.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Binding of caldesmon to smooth muscle myosin   总被引:9,自引:0,他引:9  
Caldesmon, a major calmodulin binding protein, was found to bind smooth muscle myosin. Addition of caldesmon to smooth muscle myosin induced the formation of small aggregates of myosin in the absence of Ca2+-calmodulin, but not in the presence of Ca2+-calmodulin. The binding site of myosin was studied by using caldesmon-Sepharose 4B affinity chromatography. Subfragment 1 was not retained by the column, while heavy meromyosin and subfragment 2 were bound to the caldesmon affinity column in the absence of Ca2+-calmodulin but not in its presence. It was therefore concluded that the binding site of caldesmon on myosin molecule was the subfragment 2 region and that binding of caldesmon to myosin was abolished in the presence of Ca2+ and calmodulin. Cross-linking of actin and myosin mediated by caldesmon was studied. While actomyosin was completely dissociated in the presence of Mg2+-ATP, the addition of caldesmon caused aggregation of the actomyosin. By low speed centrifugation at which actomyosin alone was not precipitated in the presence of Mg2+-ATP, the aggregate induced by caldesmon was precipitated and the composition of the precipitate was found to be actin, caldesmon, and myosin. In the presence of Mg2+-ATP, pure actin did not bind to a myosin-Sepharose 4B affinity column, while all of the actin was retained when the actin/caldesmon mixture was applied to the column. These results indicate that caldesmon can cross-link actin and myosin.  相似文献   

17.
Cloning and expression of a smooth muscle caldesmon   总被引:17,自引:0,他引:17  
Caldesmon is a smooth muscle and nonmuscle regulatory protein that interacts with actin, myosin, tropomyosin, and calmodulin. Two overlapping clones, isolated from a chicken oviduct cDNA plasmid library and a chicken gizzard cDNA lambda NM1149 library, were used to generate a 4108-base pair sequence coding for one caldesmon. Expression of the coding sequence confirms this is one of the large smooth muscle caldesmons. The deduced protein molecular weight is 86.974, significantly less than the molecular weights estimated by sodium dodecyl sulfate gel electrophoresis. The protein has a high content of Gly, Lys, Arg, and Ala; there are two cysteine residues, one at either end of the molecule. Comparison with the Protein Identification Resource database demonstrates a similarity with a tropomyosin binding domain of troponin T, but none with any calmodulin or actin binding proteins. The center of the protein has an 8-fold repeat of a 13 amino acid sequence whose general motif is -Glu3-(Lys/Arg)2-Ala2-Glu2-(Lys/Arg)1-X-(Lys/Arg)1-Ala1-, where X is Glu, Gln, or Ala. Comparison with peptide sequences from a chymotryptic fragment that binds actin and calmodulin places this domain on the C terminus of caldesmon adjacent to the troponin T similarity. A tentative map of the major binding domains is proposed on the basis of available data.  相似文献   

18.
Interaction of smooth muscle caldesmon with phospholipids   总被引:1,自引:0,他引:1  
A V Vorotnikov  N B Gusev 《FEBS letters》1990,277(1-2):134-136
Taking into account the perimembrane localization of caldesmon [(1986) Nature 319, 68] and its ability to participate in the regulation of receptor clusterization [(1989) J. Biol. Chem. 264, 496], we studied the interaction of duck gizzard caldesmon with soybean phospholipids (azolectin). By using four independent methods, i.e. light scattering, gel-electrophoresis, gel-filtration and ultracentrifugation, we showed a Ca-independent complex formation between caldesmon and azolectin. Interacting with caldesmon, calmodulin is shown to dissociate the caldesmon-azolectin complex. It is supposed that the caldesmon-phospholipid interaction may affect caldesmon phosphorylation by Ca-phospholipid-dependent protein kinase. This effect may be important for various cell motility processes.  相似文献   

19.
20.
We have previously shown that nonmuscle caldesmon copurified with brain microtubules binds to microtubules in vitro [Ishikawa et al.: FEBS Lett. 299:54-56, 1992]. To explore the role of caldesmon in the functions of microtubules, further characterization was performed using smooth muscle caldesmon, whose molecular structure and function have been best-characterized in all caldesmon species. Smooth muscle caldesmon bound to microtubules with a stoichiometry of five tubulin dimers to one molecule of caldesmon with the binding constant of 1.1 x 10(6) M-1. The binding of caldesmon to microtubules was inhibited in the presence of Ca2+ and calmodulin. Partial digestion of the caldesmon with alpha-chymotrypsin revealed that the binding site of the caldesmon for microtubules lay in the 34-kDa C-terminal domain. When the caldesmon was in the dimeric form in the absence of a reducing agent, the caldesmon cross-linked microtubules to form bundles. Further, the caldesmon potentiated the polymerization of tubulin, and inhibited the in vitro movement of microtubules on dynein. These results suggest that caldesmon may be involved in the regulation by Ca2+ of the functions of microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号