首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   

2.
Photosynthetic capacity and its relationship to leaf nitrogen content are two of the most sensitive parameters of terrestrial biosphere models (TBM) whose representation in global‐scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Here, we use data of qualitative traits, climate and soil to subdivide the terrestrial vegetation into functional types (PFT), and then assimilate observations of carboxylation capacity, Vmax (723 data points), and maximum photosynthesis rates, Amax (776 data points), into the C3 photosynthesis model proposed by Farquhar et al. to constrain the relationship of (Vmax normalised to 25 °C) to leaf nitrogen content per unit leaf area for each PFT. In a second step, the resulting functions are used to predict per PFT from easily measurable values of leaf nitrogen content in natural vegetation (1966 data points). Mean values of thus obtained are implemented into a TBM (BETHY within the coupled climate–vegetation model ECHAM5/JSBACH) and modelled gross primary production (GPP) is compared with independent observations on stand scale. Apart from providing parameter ranges per PFT constrained from much more comprehensive data, the results of this analysis enable several major improvements on previous parameterisations. (1) The range of mean between PFTs is dominated by differences of photosynthetic nitrogen use efficiency (NUE, defined as divided by leaf nitrogen content), while within each PFT, the scatter of values is dominated by the high variability of leaf nitrogen content. (2) We find a systematic depression of NUE on certain tropical soils that are known to be deficient in phosphorous. (3) of tropical trees derived by this study is substantially lower than earlier estimates currently used in TBMs, with an obvious effect on modelled GPP and surface temperature. (4) The root‐mean‐squared difference between modelled and observed GPP is substantially reduced.  相似文献   

3.
Hydraulic responses to height growth in maritime pine trees   总被引:12,自引:2,他引:10  
As trees grow taller, decreased xylem path conductance imposes a major constraint on plant water and carbon balance, and is thus a key factor underlying forest productivity decline with age. The responses of stomatal conductance, leaf area: sapwood area ratio (AL : AS) and soil–leaf water potential gradient (ΔΨS–L) to height growth were investigated in maritime pine trees. Extensive measurements of in situ sap flow, stomatal conductance and (non‐gravitational) needle water potential (L = ΨL ? ρwgh) were made during 2 years in a chronosequence of four even‐aged stands, under both wet and dry soil conditions. Under wet soil conditions, L was systematically lower in taller trees on account of differences in gravitational potential. In contrast, under dry soil conditions, our measurements clearly showed that L was maintained above a minimum threshold value of ?2.0 MPa independently of tree height, thus limiting the range of compensatory change in ΔΨS–L. Although a decrease in the AL : AS ratio occurred with tree height, this compensation was not sufficient to prevent a decline in leaf‐specific hydraulic conductance, KL (50% lower in 30 m trees than in 10 m trees). An associated decline in stomatal conductance with tree height thus occurred to maintain a balance between water supply and demand. Both the increased investment in non‐productive versus productive tissues (AS : AL) and stomatal closure may have contributed to the observed decrease in tree growth efficiency with increasing tree height (by a factor of three from smallest to tallest trees), although other growth‐limiting responses (e.g. soil nutrient sequestration, increased respiratory costs) cannot be excluded.  相似文献   

4.
Abstract: We surveyed drumming ruffed grouse (Bonasa umbellus) to estimate the probability of detecting an individual, and we used Bayesian model selection to assess the influence of factors that may affect detection probabilities of drumming grouse. We found the average probability of detecting a drumming ruffed grouse during a daily survey was 0.33. The probability of detecting a grouse was most strongly influenced by the temperature change during a survey (temp change = 0.23, 95% probability interval [PI] = 0.13 ≤ ≤ 0.33) and its interaction with temperature at the start of the survey (interaction = 0.01, 95% PI = 1.42 × 10−3 ≤ ≤ 0.03). Although the best model also included a main effect of temperature at the start of surveys, this variable did not strongly correlate with detection probabilities (start temp = −0.03, 95% PI = −0.06 ≤ ≤ 9.80 × 10−5). Model assessment using data collected at other sites indicated that this best model performed adequately (i.e., positive correlation between observed and predicted values) but did not explain much of the variation in detection rates. Our results are useful for understanding the historical drumming index used to assess ruffed grouse populations and for designing auditory surveys for this important game bird.  相似文献   

5.
According to the semelparity hypothesis, iteroparous insects should provide either no maternal care or less care than related semelparous species. We present field data on reproductive output and maternal care in the Southeast Asian treehopper Pyrgauchenia tristaniopsis (Mt. Kinabalu, Borneo) relevant to a preliminary assessment of the hypothesis. In a mark‐recapture experiment, more females than expected under semelparity were found to have oviposited a second clutch (37%). Female longevity was a of 75 d. Both these estimates were highly conservative. Oviposition was successive resulting in a of 46 eggs per clutch. Females provided care for eggs only, occasionally scraping their legs along the sides of the clutch apparently attempting to deter Brachygrammatella sp. egg parasitoids (Trichogrammatidae). Females straddled their clutch for a of 27 d, i.e. until 8 d after the beginning of first instar hatching. First instars hatched successively over a period of 11 d. When a female deserted her clutch, it contained about 37% yet unhatched eggs. Egg‐guarding effectively reduced egg mortality: the earlier a female was experimentally removed from her clutch the higher the egg mortality. Displacement experiments demonstrated that egg‐guarding is a behaviour actively maintained despite disturbances and specifically directed towards the egg clutch but not to the feeding site. We interpret our findings as being in accordance with the weaker claim of the semelparity hypothesis, i.e. the iteroparous P. tristaniopsis provided less maternal care than semelparous membracid species. Continued female feeding is discussed as a mechanism to display some level of care despite iteroparity.  相似文献   

6.
1. Increased ammonium concentrations and decreased light availability in a water column have been reported to adversely affect submersed vegetation in eutrophic waters worldwide. 2. We studied the chronic effects of moderate enrichment (NH4–N: 0.16–0.25 mg L?1) on the growth and carbon and nitrogen metabolism of three macrophytes (Ceratophyllum demersum, Myriophyllum spicatum and Vallisneria natans) under contrasting light availability in a 2‐month experiment. 3. The enrichment greatly increased the contents of free amino acids and nitrogen in the shoot / leaf of the macrophytes. This indicates that was the dominant N source for the macrophytes. 4. Soluble carbohydrate contents remained relatively stable in the shoot / leaf of the macrophytes irrespective of the treatments. Under ambient light, the starch contents in the shoot / leaf of C. demersum and M. spicatum increased with enrichment, whereas V. natans did not exhibit any change. The starch contents decreased in C. demersum, increased in M. spicatum and remained unchanged in V. natans after the combined treatment of enrichment and reduced light. 5. The enrichment did not affect the growth of the three macrophytes under the ambient light. However, it did suppress the growth of C. demersum and M. spicatum under the reduced light. The results indicate that a moderate enrichment was not directly toxic to the macrophytes although it might change their viability in eutrophic lakes in terms of the carbon and nitrogen metabolism.  相似文献   

7.
  • 1 We quantified the relationships between diatom relative abundance and water conductivity and ionic composition, using a dataset of 3239 benthic diatom samples collected from 1109 river sites throughout the U.S.A. [U.S. Geological Survey National Water‐Quality Assessment (NAWQA) Program dataset]. This dataset provided a unique opportunity to explore the autecology of freshwater diatoms over a broad range of environmental conditions.
  • 2 Conductivity ranged from 10 to 14 500 μS cm?1, but most of the rivers had moderate conductivity (interquartile range 180–618 μS cm?1). Calcium and bicarbonate were the dominant ions. Ionic composition, however, varied greatly because of the influence of natural and anthropogenic factors.
  • 3 Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed that conductivity and abundances of major ions (HCO + CO, Cl?, SO, Ca2+, Mg2+, Na+, K+) all explained a statistically significant amount of the variation in assemblage composition of benthic diatoms. Concentrations of HCO + CO and Ca2+ were the most significant sources of environmental variance.
  • 4 The CCA showed that the gradient of ionic composition explaining most variation in diatom assemblage structure ranged from waters dominated by Ca2+ and HCO + CO to waters with higher proportions of Na+, K+, and Cl?. The CCA also revealed that the distributions of some diatoms correlated strongly with proportions of individual cations and anions, and with the ratio of monovalent to divalent cations.
  • 5 We present species indicator values (optima) for conductivity, major ions and proportions of those ions. We also identify diatom taxa characteristic of specific major‐ion chemistries. These species optima may be useful in future interpretations of diatom ecology and as indicator values in water‐quality assessment.
  相似文献   

8.
A phycocyanin (PC) and three allophycocyanin (AP) components (designated PC, AP1, AP2, and AP3) were prepared from Myxosarcina concinna Printz phycobilisomes by the native gradient PAGE performed in a neutral buffer system combined with the ion exchange column chromatography on DEAE‐DE52 cellulose. PC contained one β subunit () and two α ones ( and ), and it carried two rod linkers ( and ) and one rod‐core linker (). AP1 and AP3 were characterized as peripheral core APs, whereas AP2 was an inner‐core one. AP2 and AP3 were demonstrated to function as the terminal emitters. Each of the three APs contained two β subunits ( and ), two α subunits ( and ) and an inner‐core linker (). AP2 and AP3 had another subunit of the allophycocyanin B (AP‐B) type () belonging to the β subunit group, and AP1 and AP3 carried their individual specific core linkers ( and ), respectively. No AP component was shown to associate with the core‐membrane linker LCM. The functions of the linker polypeptides in the phycobilisome (PBS) construction are discussed.  相似文献   

9.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

10.
This issue focuses on the plant vascular system, with a comprehensive review article written by Lucas et al. (pp. 294–388). The cover drawing illustrates the phosphate‐stress signaling and response network (pp. 347–351). A Pi deficiency signal is generated in roots and transported to shoots via the xylem (blue lines). This signal is recognized by source leaves to activate the Pi stress response pathway and then to load the subsequent signals into the phloem (red lines). Phloemmobile RNAs move to roots to increase Pi uptake and alter root architecture . Different phloem‐mobile RNAs are also delivered from source leaves to developing leaves and the shoot apex where they regulate development under Pi‐stress conditions.  相似文献   

11.
Diazotrophic cyanobacteria can take up combined nitrogen (nitrate, ammonium, amino acids, dissolved organic nitrogen) from solution, but the interaction between N2 fixation and uptake of combined nitrogen is not well understood. We studied the effects of combined nitrogen ) additions on N2 fixation rates in the cyanobacterium Trichodesmium erythraeum (IMS‐101) maintained in continuous culture in an N‐free medium (YBCII) and a 12:12‐h light:dark cycle. We measured acetylene reduction rates, nutrient concentrations, and biomass throughout the 12 h of illumination after the addition of nitrate (0.5–20 μM) at the start of the light period. Compared with unamended controls, Trichodesmium showed strong inhibition of acetylene reduction (up to 70%) in the presence of , with apparent saturation of the inhibition effect at an initial concentration of approximately 10 μM. The inhibition of acetylene reduction persisted through much of the light period as concentration in the culture vessel decreased. Recovery of N2 fixation was observed late in the light period in cultures amended with low concentrations of (<5 μM) when ambient concentrations had decreased to 0.3–0.4 μM in the culture vessel. Nitrate uptake accounted for as much as 86% of total N uptake and, at the higher treatment concentrations, more than made up for the observed decrease in N2 fixation rates. We conclude that Trichodesmium can obtain significant quantities of N through uptake of nitrate and does so in preference to N2 fixation when sufficient is available.  相似文献   

12.
A simulation model was written to compute the time-kinetics of turgor pressure, P, change in Chara corallina during cell pressure probe experiments. The model allowed for the contribution of a membrane plus zero, one, or two unstirred layers of any desired thickness. The hypothesis that a cell with an unstirred layer is a composite membrane that will follow the same kind of kinetics with or without unstirred layers was tested. Typical ‘osmotic pulse’ experiments yield biphasic curves with minimum or maximum pressures, Pmin(max), at time tmin(max) and a solute exponential decay with halftime . These observed data were then used to compute composite membrane properties, namely the parameters Lp = the hydraulic conductance, σ = reflection coefficient and Ps = solute permeability using theoretical equations. Using the simulation model, it was possible to fit an experimental data set to the same values of Pmin(max), tmin(max) and incorporating different, likely values of unstirred layer thickness, where each thickness requires a unique set of plasmalemma membrane values of Lp, σ and Ps. We conclude that it is not possible to compute plasmalemma membrane properties from cell pressure probe experiments without independent knowledge of the unstirred layer thickness.  相似文献   

13.
We consider the effects of parameter perturbations on a density‐dependent population at equilibrium. Such perturbations change the dominant eigenvalue λ of the projection matrix evaluated at the equilibrium as well as the equilibrium itself. We show that, regardless of the functional form of density dependence, the sensitivity of λ is equal to the sensitivity of an effective equilibrium density , which is a weighted combination of the equilibrium stage densities. The weights measure the contributions of each stage to density dependence and their effects on demography. Thus, is in general more relevant than total density, which simply adds all stages regardless of their ecological properties. As log λ is the invasion exponent, our results show that successful invasion will increase , and that an evolutionary stable strategy will maximize . Our results imply that eigenvalue sensitivity analysis of a population projection matrix that is evaluated near equilibrium can give useful information about the sensitivity of the equilibrium population, even if no data on density dependence are available.  相似文献   

14.
Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, µmol s?1) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW °C?1) for spadices scales according to C = 18.5M0.73. Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass‐specific rates of respiration are variable between species, but reach 900 nmol s?1 g?1 in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass‐specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass‐specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.  相似文献   

15.
The archaeal diversity in a shallow geothermal well on Vulcano Island, Italy was characterized using culture‐independent 16S rDNA sequence analysis. Environmental DNA was extracted from 56 °C well water, and the 16S ribosomal RNA gene was amplified with archaea‐specific primers. Restriction fragment length polymorphism (RFLP) analysis of ~250 clones revealed 35 unique patterns, which were sequenced and analyzed. These yielded 17 operational taxonomic units, of which 13, 3, and 1 were unique cren‐, eury‐, and korarchaeotal sequences, respectively. The majority of the crenarchaeotal phylotypes formed a novel, deeply‐branching clade that includes sequences from other hydrothermal environments, but no cultured representatives. Three phylotypes represent novel lineages in the Thermoproteales and two phylotypes represent a novel genus of Euryarchaeota. One euryarchaeotal phylotype was nearly identical (99%) to Palaeococcus helgesonii, an aerotolerant, hyperthermophilic fermenter previously isolated from the same well. To place this diverse archaeal community in the geochemical framework of this ecosystem, we calculate values of Gibbs free energy of 145 organic and inorganic redox reactions at in situ conditions. Energy yields ranged from 0 to 125 kJ per mole of electrons transferred. The most exergonic organic reactions were organic carbon oxidation with O2 (>100 kJ/mol e?), followed by oxidation with (61–93 kJ/mol e?), Fe(III) (43–60 kJ/mol e?), and S0/ (6–27 kJ/mol e?) as terminal electron acceptors. Overall, energy yields from inorganic reactions were similar to those of the organic reactions considered, but were less systematic with respect to terminal electron acceptor. The oxidation of methane coupled with Fe(III) reduction yielded the most energy (123 kJ/mol e?). However, the most exergonic inorganic reactions were predominantly O2, , or reduction. Reduction of , S0, CO2, and CO yielded significantly less energy (0–18 kJ/mol e?). Metabolisms of the cultured organisms identified in the Pozzo Istmo archaeal clone library were exergonic. However, most of the archaeal diversity remains uncultured and energetic calculations reveal an extensive suite of potential lithotrophic and heterotrophic metabolisms that could be exploited by these novel organisms.  相似文献   

16.
Flux measurements from eight global FLUXNET sites were used to estimate parameters in a process‐based, land‐surface model (CSIRO Biosphere Model (CBM), using nonlinear parameter estimation techniques. The parameters examined were the maximum photosynthetic carboxylation rate () the potential photosynthetic electron transport rate (jmax, 25) of the leaf at the top of the canopy, and basal soil respiration (rs, 25), all at a reference temperature of 25°C. Eddy covariance measurements used in the analysis were from four evergreen forests, three deciduous forests and an oak‐grass savanna. Optimal estimates of model parameters were obtained by minimizing the weighted differences between the observed and predicted flux densities of latent heat, sensible heat and net ecosystem CO2 exchange for each year. Values of maximum carboxylation rates obtained from the flux measurements were in good agreement with independent estimates from leaf gas exchange measurements at all evergreen forest sites. A seasonally varying and jmax, 25 in CBM yielded better predictions of net ecosystem CO2 exchange than a constant and jmax, 25 for all three deciduous forests and one savanna site. Differences in the seasonal variation of and jmax, 25 among the three deciduous forests are related to leaf phenology. At the tree‐grass savanna site, seasonal variation of and jmax, 25 was affected by interactions between soil water and temperature, resulting in and jmax, 25 reaching maximal values before the onset of summer drought at canopy scale. Optimizing the photosynthetic parameters in the model allowed CBM to predict quite well the fluxes of water vapor and CO2 but sensible heat fluxes were systematically underestimated by up to 75 W m−2.  相似文献   

17.
A hydroponic experiment with simulated water stress induced by polyethylene glycol (PEG) was conducted in greenhouse to study the effects of different nitrogen (N) forms (; and the mixture of and ) on water stress tolerance and water use efficiency (WUE and WUET) of different rice cultivars. Two rice cultivars (cv. ‘Shanyou 63’ hybrid indica and ‘Yangdao 6’ indica, China) were grown under non‐water‐ or water‐stressed condition [10% (w/v) PEG, molecular weight 6000] with different N forms for 3 weeks. Under non‐water stress, the biomass of Shanyou 63 was 50.0% and 64.3% and of Yangdao 6 was 6.9% and 87.8% higher under the supply of mixture of and than either under the sole supply of or , respectively; under water stress, the biomass of both rice cultivars decreased in all three nitrogen forms compared with non‐water stress; however, the inhibitory effect of water stress on biomass varied between and nutrition; the reduction of dry matter was significantly higher in than in nutrition. Compared with non‐water stress, under water stressed condition, WUE of both two rice cultivars significantly decreased in supply; WUE did not vary in and the mixture supply. It is concluded that (a) the resistance of water stress of rice seedlings is related to nitrogen form; (b) under water stress, could maintain a higher WUE compared with ; (c) hybrid indica rice seedlings have a higher water stress tolerance than indica rice seedlings.  相似文献   

18.
1. Unlike other nuisance algal species, the freshwater benthic diatom Didymosphenia geminata typically forms blooms in low‐nutrient rivers. The negative association between D. geminata blooming behaviour and nutrient levels appears at both catchment and smaller scales. We conducted a series of trials in streamside experimental channels colonised with D. geminata using water from the D. geminata‐affected, oligotrophic Waitaki River, South Island, New Zealand to determine how elevated nitrate and phosphate concentrations affected D. geminata cell division. Because D. geminata blooms are typically most pronounced in unshaded waters, we also investigated the growth response to shading. In all experiments, we used the frequency of dividing cells (FDC) as a metric of cell division. 2. Concentrations of nitrate and dissolved reactive phosphorus (DRP) in the Waitaki River were very low (4 mg m?3‐N and <1 mg m?3 DRP). In pilot trials, substrata colonised by D. geminata were subjected to enrichment by either switching the water source toN‐ and P‐rich spring water or by adding a stock solution. Both trials resulted in periods of rapid cell division lasting at least 8 days. 3. Experimental addition of alone triggered an initial cell division which was not sustained. However, addition of alone or together with resulted in prolonged elevation in cell division indicating that the cell division rate was P‐limited. 4. Reduced light levels resulted in decreased FDC in D. geminata in both ambient and N, N + P and P‐enriched river water. 5. Stimulation of D. geminata division rate by addition of above ambient levels confirms that, while blooming behaviour is often associated with oligotrophic rivers, the cells divide faster with greater levels of phosphorus enrichment.  相似文献   

19.
1. The impact of burrowing larvae of Ephoron virgo (Ephemeroptera, Polymitarcidae) on sediment microbiology has not been previously investigated because of difficulties in sampling the sediment of large rivers under in situ conditions. Therefore, we conducted experiments in the on‐ship Ecological Rhine Station of the University of Cologne (Germany), in which ambient conditions of the River Rhine can be closely mimicked. 2. In two consecutive seasons, experimental flow channels were stocked with Ephoron larvae and continuously supplied with water taken directly from the River Rhine. Sediment from the immediate vicinity of Ephoron burrows (i.e. U‐shaped cavities reaching 10–80 mm deep into the sediment) and bulk sediment samples were analysed for (i) particulate organic matter content, (ii) microscale in situ distribution of O2, NO, and NH, and (iii) potential activities of exoenzymes. 3. Sediment surrounding the Ephoron burrows had markedly higher organic matter contents and exoenzyme activities compared with the bulk sediment. Microsensor measurements demonstrated that local O2 and NO penetration into the sediment were greatly enhanced by larval ventilation behaviour. Volumetric O2 and NO turnover rates that were calculated from steady state concentration profiles measured directly in the burrow lining were considerably higher than at the sediment surface. 4. In the sediment of the fast flowing River Rhine Ephoron burrows are preferential sites of organic matter accumulation and dissolved oxidant penetration. Our data suggest that the burrows are surrounded by a highly active microbial community that responds to the inputs from the water column with elevated O2 and NO turnover, and release of exoenzymes into the sediment pore water. Especially during periods of mass occurrence, the larvae of E. virgo may thus significantly contribute (i) to the ecological connection between the water column and the sediment and (ii) to biogeochemical processing of organic matter in the riverbed.  相似文献   

20.
1. Our objective was to measure the effects of bioturbation and predation on the physical characteristics and biogeochemical processes in river sediments. 2. We investigated the impacts of tubificid worms tested separately and together with an omnivore (Gammarus pulex), which does feed on tubificids, on sediment distribution, water flux, sediment organic carbon, biofilm biomass and microbial activities, and the concentrations of dissolved oxygen, dissolved organic carbon, PO, NO, NO and NH in slow filtration sand–gravel columns. We hypothesised that gammarids, which exploit the top 2–3 cm of the sediment, would modify the impact of worms at the sediment surface. 3. In experiments both with and without gammarids, bioturbation by the tubificids modified both the distribution of surface particles in the sediment column and water flux. In addition, microbial aerobic (oxygen consumption) and anaerobic (denitrification and fermentative decomposition of organic matter) processes in the sediment were stimulated in the presence of tubificid worms. However, G. pulex did not affect either the density or bioturbation activity of the tubificid worms. 4. Bioturbation by the benthos can be a major process in river habitats, contributing to the retention of organic matter in sediment dynamics. The presence of at least one predator had no effect on bioturbation in sediments. In such systems, physical heterogeneity may be sufficient for tubificids to escape from generalist predators, though more specialised ones might have more effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号