首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

2.
Myosin subunit composition in human developing muscle.   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous pyrophosphate-gel studies have reported the existence of embryonic neonatal myosin isoenzymes in human developing muscle. The present investigation was undertaken to characterize their subunit composition more precisely. Two immature muscle myosins are contrasted with adult myosin: neonatal myosin and foetal myosin. The neonatal form of myosin is weakly cross-reactive with rabbit slow myosin and contains only fast-type light chains (LC), LC1F and LC2F. The associated heavy chains consist of a single electrophoretic component that reacts exclusively with antibodies against human foetal myosin and has a mobility and peptide pattern distinct from that of adult fast and slow heavy chains. Foetal myosin is distinguished by the presence of low amounts of a heavy chain immunologically cross-reactive with the adult slow form and of two additional light-chain components: a LC2S light chain and a foetal-specific light chain (LCemb.). The foetal-specific light chain, as shown by one-dimensional-peptide-map analysis, is structurally unrelated to both LC1S and LC1F light chains of human adult myosin. We conclude from these results that the ontogenesis of human muscle myosin shares certain common features with that observed in other species, except for the persistence until birth of a foetal form of heavy chain (HCemb.).  相似文献   

3.
The regulatory light chain is required for folding of smooth muscle myosin   总被引:10,自引:0,他引:10  
Light chain phosphorylation causes the folded monomeric form of myosin to extend and assemble into filaments. This observation established the involvement of the 20-kDa regulatory light chain (LC20) in conformational transitions of smooth muscle myosin. To further assess the role of this subunit in the intramolecular folding of myosin, LC20 was removed from turkey gizzard myosin at elevated temperatures in the presence of EDTA through the use of an antibody affinity column. Metal-shadowed images showed that LC20-deficient myosin had a tendency to aggregate through the neck region. When MgATP was added to filaments formed from this myosin, less than 10% of the myosin was solubilized, indicating that myosin could not fold in the absence of light chain. Readdition of native regulatory light chain restored the myosin to its original solubility properties, thus establishing reversibility. Addition of foreign light chains from skeletal muscle myosin or a chymotryptic-cleaved gizzard light chain produced the same amount of monomeric myosin in high salt that was obtained by recombination with the homologous light chain. However, the ability of the hybrid myosins to assume the folded conformation was impaired, and only a partially folded species was obtained. Single-headed myosin, like rod and light chain-deficient myosin, remained filamentous in the presence of MgATP. These results are consistent with the hypothesis that the regulatory light chain in the neck region of myosin contributes to a binding site for the myosin tail.  相似文献   

4.
Antibodies specific for rabbit fast-twitch-muscle myosin LCIF light chain were purified by affinity chromatography and characterized by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA) and a gel-electrophoresis-derived assay (GEDELISA). The antibodies did not cross-react with myosin heavy chains, and were weakly cross-reactive with the LC2F [5,5'-dithio-(2-nitrobenzoic acid)-dissociated] light chain and with all classes of dissociated light chains (LC1Sa, LC1Sb and LC2S), as well as with the whole myosin, from hind-limb slow-twitch muscle. The immunoreactivity of myosins with a truly mixed light-chain pattern (e.g. vastus lateralis and gastrocnemius) correlated with percentage content of fast-twitch-muscle-type light chains. A more extensive immunoreactivity was observed with diaphragm and masseter myosins, which were also characterized, respectively, by a relative or absolute deficiency of LC1Sa light chain. Furthermore, it was found that the LC1Sb light chain of masseter myosin is antigenically different from its slow-twitch-muscle myosin analogue, and is immunologically related to the LC1F light chain. Rabbit masseter muscle from its metabolic and physiological properties and the content, activity and immunological properties of sarcoplasmic-reticulum adenosine triphosphatase, is classified as a red, predominantly fast-twitch, muscle. Therefore our results suggest that the two antigenically different iso-forms of LC1Sb light chain are associated with the myosins of fast-twitch red and slow-twitch red fibres respectively.  相似文献   

5.
Scallop myosin molecules contain two moles of regulatory light chains and two moles of light chains with unknown function. Removal of one of the regulatory light chains by treatment with EDTA is accompanied by the complete loss of the calcium dependence of the actin-activated ATPase activity and by the loss of one of the two calcium binding sites on the intact molecule. Such desensitized preparations recombine with one mole of regulatory light chain and regain calcium regulation and calcium binding. The second regulatory light chain may be selectively obtained from EDTA-treated scallop muscles by treatment with the Ellman reagent (5,5′-dithiobis(2-nitrobenzoic acid)): treatment with this reagent, however, leads to an irreversible loss of ATPase activity. The light chains obtained by treatment with EDTA and then DTNB are identical in composition and function. A different light chain fraction obtained by subsequent treatment with guanidine-HCl does not bind to desensitized or intact myoflbrils and has no effect on ATPase activity.Regulatory light chains which bind to desensitized scallop myofibrils with high affinity and restore calcium control were found in a number of molluscan and vertebrate myosins, including Mercenaria, Spisula, squid, lobster tail, beef heart, chicken gizzard, frog and rabbit. Although these myosins all have a similar subunit structure and contain about two moles of regulatory light chain, only scallop myosin or myofibrils can be desensitized by treatment with EDTA.There appear to be two classes of regulatory light chains. The regulatory light chains of molluscs and of vertebrate smooth muscles restore full calcium binding and also resensitize purified scallop myosin. The regulatory light chains from vertebrate striated, cardiac, and the fast decapod muscles, on the other hand, have no effect on calcium binding and do not resensitize purified scallop myosin unless the myosin is complexed with actin. The latter class of light chains is found in muscles where in vitro functional tests failed to detect myosin-linked regulation.  相似文献   

6.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The myosin light chains of cultured muscle cells and embryonic muscle tissue have been examined by two-dimensional gel electrophoresis. Myosin purified from primary cultures of rat muscle cells or the myogenic cell line L6 contain not only the light chains corresponding to those of fast twitch muscle but also another protein, differing slightly in molecular weight and isoelectric point from the adult LC1 protein. By a number of criteria this additional protein is shown to be a myosin light chain: (1) it is found in highly purified myosin preparations; (2) in L6 myosin it replaces the other LC1-type light chains in stoichiometric amounts; (3) it is part of the subfragment-1 complex of myosin produced by chymotrypsin. as expected for an LC1-type light chain. Total extracts of fused cultured muscle cells, when analyzed by two-dimensional electrophoresis, contain substantial amounts of this additional LC1-type protein, strongly suggesting that it is not a proteolytic fragment produced during myosin isolation. Unfused cultures do not synthesize detectable amounts of the adult light chains or the additional LC1-type light chain. This additional LC1 protein can be detected in embryonic or newborn muscle tissue but it is not present in adult myosin or myofibrils. These results indicate that a novel form of myosin light chain, referred to as an embryonic LC1 or LC1emb, is characteristic of the early stages of muscle development.  相似文献   

8.
1. A purified preparation of Ascaris myosin was obtained from the muscle layer of Ascaris lumbricoides suum, using gel filtration and ion-exchange chromatography. 2. Ascaris myosin whether purified or unpurified, had almost the same ability for ATP-splitting and superprecipitation. 3. Ascaris myosin and rabbit skeletal myosin were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant difference in the number of light chains between both myosins was found. Ascaris myosin was found to have one heavy chain and two distinct light chain components (LC1-A and LC2-A), having molecular weights of 18000 and 16000, respectively. These light chains correspond in molecular weight to the light chain 2 (LC2-S) and light chain 3 (LC3-S) in rabbit skeletal myosin. 4. LC1-A could be liberated from the Ascaris myosin molecule reacted with 5,5'-dithio-bis(2-nirobenzoic acid( Nbs2) with recovery of ATPase activity by addition of dithiothreitol. These properties are equivalent to those of the LC2-S in rabbit skeletal myosin, although Ascaris myosin when treated with Nbs2-urea lost its ATPase activity.  相似文献   

9.
Aorta smooth myosin contains two types of light chain, LC20 and LC17, which fold together with the N-terminal region of each heavy chain to form the globular head region of myosin. We demonstrate an altered conformation of LC20 after its separation from heavy chain by high concentrations of urea, on the basis of the following evidende: 1) A polyclonal antibody against LC20 was not able to recognize this conformationally altered form; 2) Myosin reconstituted from heavy chains and urea-dissociated light chains exhibited extremely low ATPase activity. Circular dichroism unfolding profiles showed that light chains dissociated from heavy chains by SDS appeared to be more stable than those generated by urea dissociation.  相似文献   

10.
On treatment with 10 mM EDTA at 30 degrees C, protein of 18,000 daltons was released from myofibrils, thin filaments and myosin B prepared from the smooth muscle of an ascidian, Halocynthia roretzi. This protein was purified from the EDTA extract of myofibrils by differential centrifugation, freeze-drying and gel-filtration. Based on its molecular weight, electrophoretic mobilities in the presence and absence of Ca2+ and other properties, it was identified as troponin C. By EDTA treatment, ascidian myosin B lost the Ca2+-sensitivity of Mg2+-ATPase, and EDTA-treated myosin B recovered the sensitivity by mixing with the EDTA extract of myosin B in the presence of Mg2+. Gel-electrophoretic patterns indicated that desensitization and resensitization of ascidian myosin B were accompanied by the removal and binding of troponin C. These results indicate that ascidian smooth muscle is regulated by a troponin-tropomyosin system, and desensitization induced by EDTA treatment is due to the removal of troponin C but not the release of the light chains of the myosin molecule. Based on these findings, we have established a simple method for the purification of troponin C from ascidian smooth muscle.  相似文献   

11.
A myosin was isolated from the clonal rat glial cell strain C-6 and compared with rat skeletal muscle myosin. After cell extracts were subjected to gel filtration chromatography in the presence of KI and magnesium pyrophosphate the C-6 myosin was rapidly purified by a procedure similar to that used for skeletal muscle myosin. The C-6 myosin resembles muscle myosin both physically and enzymatically. It contains heavy chains of 200,000 daltons and two classes of light chains of 17,000 and 19,000 daltons in approximately equal molar ratios. This myosin forms bipolar thick filaments in 0.1 M KCl and binds reversibly to skeletal muscle F-actin, the binding being inhibited by MgATP. Skeletal muscle F-actin stimulates the C-6 myosin adenosine triphosphatase 2- to 3-fold in the presence of KCl and Mg2+. The action activation of muscle myosin ATPase at low ionic strength is 10-fold greater than that of C-6 myosin. Ca2+ and EDTA stimulated the ATPase activities of both enzymes. When assayed in the presence of 0.6 M KCl and 1 mM EDTA the skeletal muscle myocin ATPase demonstrates substrate saturation while the C-6 myosin enzyme activity is stimulated by ATP concentrations above 2.5 mM.  相似文献   

12.
Human cardiac ventricular myosin subfragment-1 (S-1) was prepared by chymotryptic digestion of myosin purified from adult and fetal hearts. The enzymatic properties of adult S-1 were compared to those of two light chain isozymes of fetal S-1 which were separated by ion-exchange chromatography. One fetal isozyme contained a light chain (LC) indistinguishable from the adult ventricular LC1 and the other fetal isozyme contained the LC1 variant that is a component of intact fetal myosin. The fetal isozymes had identical actin-activated Mg2+ ATPase rates at all actin concentrations, as well as the same K+EDTA, Ca2+, and Mg2+ATPase rates. Furthermore, both fetal isozymes had the same actin-activated Mg2+ATPase rates as S-1 purified from adult hearts. The K+EDTA and Ca2+ATPase rates of adult S-1 were only slightly different from those of fetal S-1. These observations are consistent with other available data suggesting that human fetal and adult ventricular myosin differ only in light chain content, not in heavy chain composition, and indicate that isozymic LC1 variation does not alter the steady-state ATPase rate of human cardiac S-1.  相似文献   

13.
Summary Physarum myosin is composed of a heavy chain of about 225,000 daltons and two small polypeptides of 17,700 and 16,100 daltons, called light chain one (LC 1) and two (LC 2). Light chain one is shown to belong to the general class of regulating light chains by two independent criteria. After denaturation, purification and renaturation of thePhysarum light chains only LC 1 will combine with scallop myofibrils in which one myosin regulatory light chain has been removed. This LC 1 can restore inhibition of the ATPase activity of the myofibrils at 10–8 M Ca++ just as well as light chains from rabbit skeletal myosin. Secondly, this LC 1 is the only component of the myosin that is significantly phosphorylated by an endogenous kinase present in crude actomyosin. An active phosphatase is also present. Preliminary results could not detect calcium sensitivity for either kinase or phosphatase, nevertheless the importance of phosphorylation in affecting activity of biological systems suggests that LC 1 may serve some regulating function for plasmodial actomyosin.  相似文献   

14.
Readdition of regulatory light chains to regulatory light chain denuded scallop myofibrils, in the presence of magnesium, results in a negatively co-operative restoration of calcium sensitivity as a function of regulatory light chain content. The form of the stoichiometry curves obtained in the presence of 10 mM-EDTA, by light chain removal from scallop myofibrils at various temperatures, are parabolic in shape, consistent with a random removal process. However, in the presence of EDTA at low temperatures, regulatory light chains are removed in a biphasic manner, indicating that the binding constants of the light chains for each myosin head are not equivalent under these conditions. It is shown here that as the temperature is raised, light chain removal by EDTA approaches that of a random process. The stoichiometry curves obtained in the presence of 10 mM-EDTA may therefore be seen as a composite of both a biphasic removal process (temperatures below 20 degrees C) and a random removal process (temperatures above 20 degrees C), there being a temperature-dependent switch in the myosin molecule between 17 and 23 degrees C that governs the mode of light chain removal. These results indicate that both myosin heads must contain light chains for calcium sensitivity and are consistent with our earlier proposals for head-head co-operativity within the scallop myosin molecule.  相似文献   

15.
Myosin from human erythrocytes   总被引:11,自引:0,他引:11  
We have purified myosin from human erythrocytes using methods similar to that for other cytoplasmic myosins with a yield of about 500 micrograms/100 ml of packed cells. It consists of a 200-kDa heavy chain and light chains of 26- and 19.5 kDa and therefore differs from the isozyme in platelets which has light chains of 20- and 15 kDa. At low ionic strength, the myosin forms short bipolar filaments like those of platelet myosin. Eight of eight monoclonal antibodies to platelet myosin also bind to erythrocyte myosin. Like most myosins, it has a high ATPase activity in the presence of Ca2+ or EDTA, but is inhibited by Mg2+. Myosin light-chain kinase transfers 1 phosphate from ATP to the 20-kDa light chain, and this stimulates the actin-activated ATPase. Thus, myosin may play a role in shape changes in the erythrocytes.  相似文献   

16.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

17.
Considerable interest has been focused on the role of myosin light chain LC(2) in the contraction of vertebrate striated muscle. A study was undertaken to further our investigations (Moss, R.L., G.G. Giulian, and M.L. Greaser, 1981, J. Biol. Chem., 257:8588-8591) of the effects of LC(2) removal upon contraction in skinned fibers from rabbit psoas muscles. Isometric tension and maximum velocity of shortening, V(max), were measured in fiber segments prior to LC(2) removal. The segments were then bathed at 30 degrees C for up to 240 min in a buffer solution containing 20 mM EDTA in order to extract up to 60 percent of the LC(2). Troponin C (TnC) was also partially removed by this procedure. Mechanical measurements were done following the EDTA extraction and the readditions of first TnC and then LC(2) to the segments. The protein subunit compositions of the same fiber segments were determined following each of these procedures by SDS PAGE of small pieces of the fiber. V(max) was found to decrease as the LC(2) content of the fiber segments was reduced by increasing the duration of extraction. EDTA treatment also resulted in substantial reductions in tension due mainly to the loss of TnC, though smaller reductions due to the extraction of LC(2) were also observed. Reversal of the order of recombination of LC(2) and TnC indicated that the reduction in V(max) following EDTA treatment was a specific effect of LC(2) removal. These results strongly suggest that LC(2) may have roles in determining the kinetics and extent of interaction between myosin and actin.  相似文献   

18.
In this article we review the various amino acids present in vertebrate nonmuscle and smooth muscle myosin that can undergo phosphorylation. The sites for phosphorylation in the 20 kD myosin light chain include serine-19 and threonine-18 which are substrates for myosin light chain kinase and serine-1 and/or-2 and threonine-9 which are substrates for protein kinase C. The sites in vertebrate smooth muscle and nonmuscle myosin heavy chains that can be phosphorylated by protein kinase C and casein kinase II are also summarized.Original data indicating that treatment of human T-lymphocytes (Jurkat cell line) with phorbol 12-myristate 13-acetate results in phosphorylation of both the 20 kD myosin light chain as well as the 200 kD myosin heavy chain is presented. We identified the amino acids phosphorylated in the human T-lymphocytes myosin light chains as serine-1 or serine-2 and in the myosin heavy chains as serine-1917 by 1-dimensional isoelectric focusing of tryptic phosphopeptides. Untreated T-lymphocytes contain phosphate in the serine-19 residue of teh myosin light chain and in a residue tentatively identified as serine-1944 in the myosin heavy chain.Abbreviations MLC myosin light chain - MHC myosin heavy chain - Tris tris(hydroxymethyl)aminomethane - EGTA [ethylenebis(oxyethylenenitrilo)]tetraacetic acid - EDTA ethylenediaminetetraacetate - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - PMA phorbol 12-myristate 13-acetate  相似文献   

19.
The reaction of bovine cardiac myosin with the site-specific purine disulfide analog of ATP, 6,6'-dithiobis (inosinyl imidodiphosphate), was studied to determine the stoichiometry of labeling and subunit location of the reactive cysteines. The analog inactivates myosin by forming a mixed disulfide between the thiopurine nucleotide and certain key cysteines. The thiopurine nucleotide was displaced quantitatively by 14CN to form the more stable thiocyanato-enzyme derivatives. In cardiac myosin, the reactive cysteines could be categorized into three classes, nonessential, critical, and noncritical. The modification of the critical cysteines (two per myosin) inactivated the EDTA and Ca2+ ATPase activities, the latter to a lesser extent. The nonessential cysteines (two to three per myosin) and the noncritical cysteines (two per myosin), differentiated by their rates of reaction, had no effect on the ATPase activities after modification. Thiocyanato-modified myosin was analyzed by sodium dodecyl sulfate gel electrophoresis to determine the distribution of 14CN in the subunits. The critical cysteines were found on the 21,000-dalton light chain (LC1) and the noncritical cysteines on the heavy chains. More specifically, the critical cysteine modified in cardiac LC1 (determined from the products after cyclization and chain cleavage at the thiocyanatoalanyl residues) was shown to be the thiol residue whose surrounding amino acid sequence is homologous to that of the single cysteine of the skeletal myosin alkali light chains, confirming the likely similar structure and function of these light chains in the two different muscle types.  相似文献   

20.
Abalone myosin contains two kinds of light chain, regulatory light chain (LC2) and essential light chain (LC1) according to SDS-PAGE. Three distinct light chain bands were observed on polyacrylamide gel electrophoresis of purified abalone myosin in the presence of urea (urea-PAGE). The slower two components showed had mobility on SDS-PAGE and they also showed regulatory activity as the regulatory light chain. They were termed LC2-a and LC2-b in order of increasing mobility on urea-PAGE and isolated by DE-32 ion exchange column chromatography in the presence 8 M urea. The ratio of LC2-a and LC2-b in the central portion of adductor muscle of abalone (LC2-a: LC2-b = 7:3) was different from that (1:1) in the peripheral portion. These results suggest that the two light chains are isoforms of the regulatory light chain. The amino acid compositions of LC2-a and LC2-b were very similar to each other except for the Cys content. The UV absorption spectra were also quite similar, as were the UV difference absorption spectra induced by Ca2+. Phosphorylation was not detectable with the myosin light chain kinase of chicken gizzard. The Ca2+ concentration dependencies of Mg-ATPase activity of LC2-a or LC2-b hybridized abalone myosin (a-myosin, b-myosin) were similar to each other in the absence of rabbit F-actin, but differed in the presence of actin. The b-myosin had a higher maximum value of actomyosin ATPase activity and a lower apparent binding constant of actin and myosin than a-myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号