首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of IL-8 can be induced by LPS via TLR4 signaling pathway. In this study, we tested the effect of a herbal melanin (HM) extract, from black cumin seeds (Nigella sativa L.), on IL-8 production. We used HM and LPS in parallel to induce IL-8 production by THP-I, PBMCs, and TLR4-transfected HEK293 cells. Both HM and LPS induced IL-8 mRNA expression and protein production in THP-1 and PBMCs. On applying similar treatment to HEK293 cells that express TLR4, MD2, and CD14, both HM and LPS significantly induced IL-8 protein production. We have also demonstrated that HM and LPS had identical effects in terms of IL-8 stimulation by HEK293 transfected with either TLR4 or MD2-CD14. Melanin extracted from N. sativa L. mimics the action of LPS in the induction of IL-8 by PBMC and the other used cell lines. Our results suggest that HM may share a signaling pathway with LPS that involves TLR4.  相似文献   

2.
The major and minor fimbriae proteins produced by the human pathogen Porphyromonas gingivalis are required for invasion of human aortic endothelial cells and for the stimulation of potent inflammatory responses. In this study, we report that native forms of both the major and minor fimbriae proteins bind to and signal through TLR2 for this response. Major and minor fimbriae bound to a human TLR2:Fc chimeric protein with an observed K(d) of 28.9 nM and 61.7 nM, respectively. Direct binding of the major and minor fimbriae to a human chimeric CD14-Fc protein also established specific binding of the major and minor fimbriae to CD14 with classic saturation kinetics. Using a P. gingivalis major and minor fimbriae mutant, we confirmed that TLR2 binding in whole cells is dependent on the expression of the major and minor fimbriae. Although we did not observe binding with the major or minor fimbriae to the TLR4-Fc chimeric protein, signaling through TLR4 for both proteins was demonstrated in human embryonic kidney 293 cells transfected with TLR4 and only in the presence MD-2. Transient transfection of dominant-negative forms of TLR2 or TLR4 reduced IL-8 production by human aortic endothelial cells following stimulation with major or minor fimbriae. The ability of two well-defined microbe-associated molecular patterns to select for innate immune recognition receptors based on accessory proteins may provide a novel way for a pathogen to sense and signal in appropriate host environments.  相似文献   

3.
We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation.  相似文献   

4.
We determine that OmpA of Shigella flexneri 2a is recognized by TLR2 and consequently mediates the release of proinflammatory cytokines and activates NF-κB in HEK 293 cells transfected with TLR2. We also observe that in RAW macrophages TLR2 is essential to instigate the early immune response to OmpA via NF-κB activation and secretion of cytokines and NO. Consistent with these results, TLR2 knockdown using siRNA abolishes the initiation of immune responses. Processing and presentation of OmpA depend on TLR2; MHCII presentation of the processed antigen and expression of CD80 significantly attenuated in TLR2 knockdown macrophages. The optimum production of IFN-γ by the macrophages:CD4(+) T cells co-culture depends on both TLR2 activation and antigen presentation. So, TLR2 is clearly recognized as a decisive factor in initiating host innate immune response to OmpA for the development of CD4(+) T cell adaptive response. Furthermore, we demonstrate in vivo that intranasal immunization of mice with OmpA selectively enhances the release of IFN-γ and IL-2 by CD4(+) T cells. Importantly, OmpA increases the level of IFN-γ production in Ag-primed splenocytes. The addition of neutralizing anti-IL-12p70 mAb to cell cultures results in the decreased release of OmpA-enhanced IFN-γ by Ag-primed splenocytes. Moreover, coincubation with OmpA-pretreated macrophages enhances the production of IFN-γ by OmpA-primed CD4(+) T cells, representing that OmpA may enhance IFN-γ expression in CD4(+) T cells through the induction of IL-12 production in macrophages. These results demonstrate that S. flexneri 2a OmpA may play a critical role in the development of Th1 skewed adaptive immune response.  相似文献   

5.
Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4   总被引:11,自引:0,他引:11  
Cystic fibrosis is characterised in the lungs by high levels of neutrophil elastase (NE). NE induces interleukin-8 (IL-8) expression via an IL-1 receptor-associated kinase signalling pathway. Here, we show that these events involve the cell surface membrane bound toll-like receptor 4 (TLR4). We demonstrate that human embryonic kidney (HEK)293 cells transfected with a TLR4 cDNA (HEK-TLR4) express TLR4 mRNA and protein and induce IL-8 promoter activity in response to NE. Treatment of both HEK-TLR4 and human bronchial epithelial cells with NE decreases TLR4 protein expression. Furthermore, a TLR4 neutralising antibody abrogates NE-induced IL-8 production, and induces tolerance to a secondary lipopolysaccharide stimulus. These data implicate TLR4 in NE induced IL-8 expression in bronchial epithelium.  相似文献   

6.
We investigated the effect of Toll-like receptor 4 (TLR4) on the progression of murine Pneumocystis pneumonia. TLR4-mutant C3H/HeJ and wild-type C3H/HeN mice were infected with Pneumocystis after depletion of CD4 T cells. Mutant mice lost body weight more quickly and showed exacerbated pulmonary injury even though there was no difference in Pneumocystis organism burden in the lung. Mutant mice showed reduced levels of IL-10, IL-12p40 and MIP-2 accompanied by elevated levels of TNF-alpha and IL-6 in the bronchoalveolar lavage fluid compared with those of wild-type mice 8 weeks after the infection. In response to stimulation with Pneumocystis antigen, the production of IL-10, IL-12p40 and MIP-2 by alveolar macrophages was partially impaired in mutant mice, while that in wild-type mice was suppressed by the anti-TLR4/MD-2 mAb, MTS510. Unlike the response to lipopolysaccharide stimulation, TLR4-reconstituted HEK293 cells showed no elevated NF-kappaB activation after stimulation with Pneumocystis antigen. Taken together, these findings suggest that recognition of Pneumocystis by TLR4 helps to regulate the host inflammatory responses through cytokine and chemokine production by alveolar macrophages.  相似文献   

7.
During Toxoplasma gondii infection, macrophages, dendritic cells, and neutrophils are important sources of pro-inflammatory cytokines from the host. To counteract the pro-inflammatory activities, T. gondii is known to have several mechanisms inducing down-regulation of the host immunity. In the present study, we analyzed the production of proand anti-inflammatory cytokines from a human myelomonocytic cell line, THP-1 cells, in response to treatment with T. gondii lysate or lipopolysaccharide (LPS). Treatment of THP-1 cells with LPS induced production of IL-12, TNF-alpha, IL-8, and IL-10. Co-treatment of THP-1 cells with T. gondii lysate inhibited the LPS-induced IL-12, IL-8 and TNF-alpha expression, but increased the level of IL-10 synergistically. IL-12 and IL-10 production was down-regulated by anti-human toll-like receptor (TLR)-2 and TLR4 antibodies. T. gondii lysate triggered nuclear factor (NF)-kappaB-dependent IL-8 expression in HEK293 cells transfected with TLR2. It is suggested that immunosuppression induced by T. gondii lysate treatment might occur via TLR2-mediated NF-kappaB activation.  相似文献   

8.
Protein kinase D (PKD), also called protein kinase C (PKC)mu, is a serine-threonine kinase that is involved in diverse areas of cellular function such as lymphocyte signaling, oxidative stress, and protein secretion. After identifying a putative PKD phosphorylation site in the Toll/IL-1R domain of TLR5, we explored the role of this kinase in the interaction between human TLR5 and enteroaggregative Escherichia coli flagellin in human epithelial cell lines. We report several lines of evidence that implicate PKD in TLR5 signaling. First, PKD phosphorylated the TLR5-derived target peptide in vitro, and phosphorylation of the putative target serine 805 in HEK 293T cell-derived TLR5 was identified by mass spectrometry. Furthermore, mutation of serine 805 to alanine abrogated responses of transfected HEK 293T cells to flagellin. Second, TLR5 interacted with PKD in coimmunoprecipitation experiments, and this association was rapidly enhanced by flagellin treatment. Third, pharmacologic inhibition of PKC or PKD with G?6976 resulted in reduced expression and secretion of IL-8 and prevented the flagellin-induced activation of p38 MAPK, but treatment with the PKC inhibitor G?6983 had no significant effects on these phenotypes. Finally, involvement of PKD in the p38-mediated IL-8 response to flagellin was confirmed by small hairpin RNA-mediated gene silencing. Together, these results suggest that phosphorylation of TLR5 by PKD may be one of the proximal elements in the cellular response to flagellin, and that this event contributes to p38 MAPK activation and production of inflammatory cytokines in epithelial cells.  相似文献   

9.
We prepared enzymatically synthesized glycogen (ESG) with the same characteristics as natural glycogen and investigated whether the macrophage-stimulating activity of glycogen was related to Toll-like receptors (TLRs), which are important receptors for innate immunity. ESG induced no nuclear factor-kappa B (NF-κB) activity in TLR4/MD-2/CD14-expressed human embryonic kidney 293 (HEK293) reporter cells, whereas this polysaccharide did activate peritoneal exude cells (PECs) derived from TLR4-deficient mice at the same level as those from wild-type (WT) mice. Similarly, ESG did not activate HEK293 cells expressing TLR3, 5, 7, 8 or 9, suggesting that these TLRs were irrelevant to the activity of ESG. In contrast, ESG enhanced the NF-κB activity of TLR2-expressed HEK293 reporter cells in a concentration-dependent manner. Furthermore, the cell-stimulating activity of ESG was remarkably lower for PECs from TLR2-deficient mice compared with those from WT mice. The activity of ESG completely disappeared after treatment with a glycogen-degrading enzyme, indicating that the activity derived from ESG itself and not from contamination with canonical TLR2 ligands such as bacterial lipopeptides. Moreover, it was clarified by ELISA that ESG was directly bound to TLR2. Taken together, these results demonstrated that TLR2 directly recognizes glycogen and that the recognition activates immunocytes such as macrophages to enhance the production of nitric oxide and inflammatory cytokines. In addition, it was suggested that TLR2 could be involved in the glycogen activity in vivo. We propose that glycogen act as an activator to potentiate the host defense through TLR2 on the macrophage.  相似文献   

10.
11.
The present study was designed to elucidate the role of TLR2, TLR4 and dectin-1 in the production of IL-12p40 by bone marrow-derived dendritic cells (BM-DCs) infected with Penicillium marneffei. IL-12p40 production was almost completely abrogated in BM-DCs from TLR2 gene-knockout (KO) and MyD88KO mice, but not from TLR4-defective C3H/HeJ mice compared to those from control mice. Furthermore, BM-DCs from dectin-1KO mice faintly produced IL-12p40 upon stimulation with this fungus. Using a luciferase reporter assay, P. marneffei activated NF-kappaB in HEK293 cells transfected with the TLR2 gene, but not with the dectin-1 gene, and their co-transfection did not lead to further increase in this response. These results indicate that TLR2 and dectin-1 are essential in sensing P. marneffei for the activation of BM-DCs.  相似文献   

12.
Toll-like receptor 2 (TLR2) and CD14 function as pattern recognition receptors for bacterial peptidoglycan (PGN). TLRs and CD14 possess repeats of the leucine-rich motif. To address the role of the extracellular domain of TLR2 in PGN signaling, we constructed CD14/TLR2 chimeras, in which residues 1-356 or 1-323 of CD14 were substituted for the extracellular domain of TLR2, and five deletion mutants of TLR2, in which the progressively longer regions of extracellular TLR2 regions were deleted. PGN induced NF-kappaB activation in HEK293 cells expressing TLR2 but not in cells expressing CD14/TLR2 chimeras. The cells transfected with a deletion mutant TLR2(DeltaCys30-Ile64) as well as TLR2(DeltaCys30-Asp160) and TLR2(DeltaCys30-Asp305) failed to respond to PGN, indicating the importance of the TLR2 region Cys(30)-Ile(64). Although TLR2(DeltaCys30-Ser39) conferred cell responsiveness to PGN, the cells expressing TLR2(DeltaSer40-Ile64) failed to induce NF-kappaB activation. In addition, NF-kappaB activity elicited by PGN was significantly attenuated in the presence of synthetic peptide corresponding to the TLR2 region Ser(40)-Ile(64). From these results, we conclude that; 1) CD14 cannot functionally replace the extracellular domain of TLR2 in PGN signaling; 2) the TLR2 region Cys(30)-Ser(39) is not required for PGN recognition; 3) the TLR2 region containing Ser(40)-Ile(64) is critical for PGN recognition.  相似文献   

13.
In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E. coli or a mutant strain deficient in htrB, a chimeric LPS with altered lipid A structure was produced. Compared with wild-type E. coli lipid A, the new lipid A species contained a palmitate (C16) in the position normally occupied by laurate (C12) suggesting that the cloned gene performs the same function as E. coli htrB but preferentially transfers the longer-chain palmitic acid that is known to be present in P. gingivalis LPS. LPS was purified from wild-type E. coli, the E. coli htrB mutant strain and the htrB mutant strain expressing the P. gingivalis acyltransferase. LPS from the palmitate bearing chimeric LPS as well as the htrB mutant exhibited a reduced ability to activate human embryonic kidney 293 (HEK293) cells transfected with TLR4/MD2. LPS from the htrB mutant also had a greatly reduced ability to stimulate interleukin-8 (IL-8) secretion in both endothelial cells and monocytes. In contrast, the activity of LPS from the htrB mutant bacteria expressing the P. gingivalis gene displayed wild-type activity to stimulate IL-8 production from endothelial cells but a reduced ability to stimulate IL-8 secretion from monocytes. The intermediate activation observed in monocytes for the chimeric LPS was similar to the pattern seen in HEK293 cells expressing TLR4/MD2 and CD14. Thus, the presence of a longer-chain fatty acid on E. coli lipid A altered the activity of the LPS in monocytes but not endothelial cell assays and the difference in recognition does not appear to be related to differences in Toll-like receptor utilization.  相似文献   

14.
Epstein-Barr virus (EBV) is a gammaherpesvirus infecting the majority of the human adult population in the world. TLR2, a member of the Toll-like receptor (TLR) family, has been implicated in the immune responses to different viruses including members of the herpesvirus family, such as human cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. In this report, we demonstrate that infectious and UV-inactivated EBV virions lead to the activation of NF-kappaB through TLR2 using HEK293 cells cotransfected with TLR2-expressing vector along with NF-kappaB-Luc reporter plasmid. NF-kappaB activation in HEK293-TLR2 cells (HEK293 cells transfected with TLR2) by EBV was not enhanced by the presence of CD14. The effect of EBV was abrogated by pretreating HEK293-TLR2 cells with blocking anti-TLR2 antibodies or by preincubating viral particles with neutralizing anti-EBV antibodies 72A1. In addition, EBV infection of primary human monocytes induced the release of MCP-1 (monocyte chemotactic protein 1), and the use of small interfering RNA targeting TLR2 significantly reduced such a chemokine response to EBV. Taken together, these results indicate that TLR2 may be an important pattern recognition receptor in the immune response directed against EBV infection.  相似文献   

15.
16.
The elicitation of large amount inflammatory cytokine in serum has been developed as the cause of the plasma leakage in dengue fever (DF)/dengue haemorrhagic fever (DHF) infection. Virus recognition in innate immunity is the key. The Toll-like receptors (TLRs) play an important role in pathogen recognition towards cytokine induction among several viruses; however, the role of TLRs on innate immune recognition against DENV remains unclear. This study aims at the interaction between dengue virus (DENV) and human TLRs at the incipient stage of infection in vitro . Our experiment reveals that stably expression of TLR3, 7, 8 on HEK293 enables IL-8 secretion after DENV recognition. By the model of human monocytic cells U937, we demonstrated the trigger of IL-8 after viral recognition of human monocytic cell is primary through TLR3 following endosomal acidification. Silencing of TLR3 in U937 cells significantly blocks the DENV-induced IL-8 production. Besides, the interaction is further corroborated by colocalization of TLR3 and DENV RNA upon DENV internalization. Furthermore, in this study we found the expression of TLR3 can mediate strong IFN-α/β release and inhibit DENV viral replication significantly, thus limit the cytopathic effect.  相似文献   

17.
18.
19.
Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N -acetyl-β- d -glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta -periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号