首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To complement experimental studies of the src SH3 domain folding, we studied 30 independent, high-temperature, molecular dynamics simulations of src SH3 domain unfolding. These trajectories were observed to differ widely from each other. Thus, rather than analyzing individual trajectories, we sought to identify the recurrent features of the high-temperature unfolding process. The conformations from all simulations were combined and then divided into groups based on the number of native contacts. Average occupancies of each side-chain hydrophobic contact and hydrogen bond in the protein were then determined. In the symmetric funnel limit, the occupancies of all contacts should decrease in concert with the loss in total number of native contacts. If there is a lack of symmetry or hierarchy to the unfolding process, the occupancies of some contacts should decrease more slowly, and others more rapidly. Despite the heterogeneity of the individual trajectories, the ensemble averaging revealed an order to the unfolding process: contacts between the N and C-terminal strands are the first to disappear, whereas contacts within the distal beta-hairpin and a hydrogen-bonding network involving the distal loop beta-turn and the diverging turn persist well after the majority of the native contacts are lost. This hierarchy of events resembles but is somewhat less pronounced than that observed in our experimental studies of the folding of src SH3 domain.  相似文献   

2.
The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na+Cl- counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt x DNA x DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermodynamic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20 degrees for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to -30 degrees, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3'-endo domain and C2'-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt x DNA x DNmt hybrid triplex is compared to the DNG x DNA x DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N+H2)-NH-).  相似文献   

3.
Retroviruses employ -1 translational frameshifting to regulate the relative concentrations of structural and non-structural proteins critical to the viral life cycle. The 1.6 A crystal structure of the -1 frameshifting pseudoknot from beet western yellows virus reveals, in addition to Watson-Crick base-pairing, many loop-stem RNA tertiary structural interactions and a bound Na(+). Investigation of the thermodynamics of unfolding of the beet western yellows virus pseudoknot reveals strongly pH-dependent loop-stem tertiary structural interactions which stabilize the molecule, contributing a net of DeltaH approximately -30 kcal mol(-1) and DeltaG degrees (37) of -3.3 kcal mol(-1) to a total DeltaH and DeltaG degrees (37) of -121 and -16 kcal mol(-1), respectively, at pH 6.0, 0.5 M K(+) by DSC. Characterization of mutant RNAs supports the presence of a C8(+).G12-C26 loop 1-stem 2 base-triple (pK(a)=6.8), protonation of which contributes nearly -3.5 kcal mol(-1) in net stability in the presence of a wild-type loop 2. Substitution of the nucleotides in loop 2 with uridine bases, which would eliminate the minor groove triplex, destroys pseudoknot formation. An examination of the dependence of the monovalent ion and type on melting profiles suggests that tertiary structure unfolding occurs in a manner quantitatively consistent with previous studies on the stabilizing effects of K(+), NH(4)(+) and Na(+) on other simple duplex and pseudoknotted RNAs.  相似文献   

4.
X-ray, phylogenetic and quantum chemical analysis of molecular interactions and conservation patterns of cis Watson-Crick (W.C.) A/G base-pairs in 16S rRNA, 23S rRNA and other molecules was carried out. In these base-pairs, the A and G nucleotides interact with their W.C. edges with glycosidic bonds oriented cis relative to each other. The base-pair is stabilised by two hydrogen bonds, the C1'-C1' distance is enlarged and the G(N2) amino group is left unpaired. Quantum chemical calculations show that, in the absence of other interactions, the unpaired amino group is substantially non-planar due to its partial sp(3) pyramidalization, while the whole base-pair is internally propeller twisted and very flexible. The unique molecular properties of the cis W.C. A/G base-pairs make them distinct from other base-pairs. They occur mostly at the ends of canonical helices, where they serve as interfaces between the helix and other motifs. The cis W.C. A/G base-pairs play crucial roles in natural RNA structures with salient sequence conservation patterns. The key contribution to conservation is provided by the unpaired G(N2) amino group that is involved in a wide range of tertiary and neighbor contacts in the crystal structures. Many of them are oriented out of the plane of the guanine base and utilize the partial sp(3) pyramidalization of the G(N2). There is a lack of A/G to G/A covariation, which, except for the G(N2) position, would be entirely isosteric. On the contrary, there is a rather frequent occurrence of G/A to G/U covariation, as the G/U wobble base-pair has an unpaired amino group in the same position as the cis W.C. G/A base-pair. The cis W.C. A/G base-pairs are not conserved when there is no tertiary or neighbor interaction. Obtaining the proper picture of the interactions and phylogenetic patterns of the cis W.C. A/G base-pairs requires a detailed analysis of the relation between the molecular structures and the energetics of interactions at a level of single H-bonds and contacts.  相似文献   

5.
The Tetrahymena group I intron catalyzes self-splicing through two consecutive transesterification reactions, using a single guanosine-binding site (GBS). In this study, we constructed a model RNA that contains the GBS and a conserved guanosine nucleotide at the 3'-terminus of the intron (omegaG). We determined by NMR the solution structure of this model RNA, and revealed the guanosine binding mechanism of the group I intron. The G22 residue, corresponding to omegaG, participates in a base triple, G22 xx G3 x C12, hydrogen-bonding to the major groove edge of the Watson-Crick G3 x C12 pair. The G22 residue also interacts with A2, which is semi-conserved in all sequenced group I introns.  相似文献   

6.
Exocyclic DNA adducts are formed from metabolites of chemical carcinogens and have also been detected as endogenous lesions in human DNA. The exocyclic adduct 3,N(4)-etheno-2'-deoxycytidine (epsilon dC), positioned opposite deoxyguanosine in the B-form duplex of the dodecanucleotide d(CGCGAATTepsilonCGCG), has been crystallographically characterized at 1.8A resolution. This self-complementary oligomer crystallizes in space group P3(2)12, containing a single strand in the asymmetric unit. The crystal structure was solved by isomorphous replacement with the corresponding unmodified dodecamer structure. Exposure of both structures to identical crystal packing forces allows a detailed investigation of the influence of the exocyclic base adduct on the overall helical structure and local geometry. Structural changes are limited to the epsilon C:G and adjacent T:A and G:C base-pairs. The standard Watson-Crick base-pairing scheme, retained in the T:A and G:C base-pairs, is blocked by the etheno bridge in the epsilon C:G pair. In its place, a hydrogen bond involving O2 of epsilon C and N1 of G is present. Comparison with an epsilon dC-containing NMR structure confirms the general conformation reported for epsilon C:G, including the hydrogen bonding features. Superposition with the crystal structure of a DNA duplex containing a T:G wobble pair shows similar structural changes imposed by both mismatches. Evaluation of the hydration shell of the duplex with bond valence calculations reveals two sodium ions in the crystal.  相似文献   

7.
A series of DNA 21-mers containing a variety of the 4 x 4 internal loop sequence 5'-CAAG-3'/3'-ACGT-5' were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers exhibit excellent resolution in the NMR spectra and reveal many unusual NOEs (nuclear Overhauser effect) that allow for the detailed characterization of a DNA hairpin incorporating a track of four different non-Watson-Crick base-pairs in the stem. These include a wobble C.A base-pair, a sheared A.C base-pair, a sheared A.G base-pair, and a wobble G.T base-pair. Significantly different twisting angles were observed between the base-pairs in internal loop that results with excellent intra-strand and inter-strand base stacking within the four consecutive mismatches and the surrounding canonical base-pairs. This explains why it melts at 52 degrees C even though five out of ten base-pairs in the stem adopt non-Watson-Crick pairs. However, the 4 x 4 internal loop still fits into a B-DNA double helix very well without significant change in the backbone torsion angles; only zeta torsion angles between the tandem sheared base-pairs are changed to a great extent from the gauche(-) domain to the trans domain to accommodate the cross-strand base stacking in the internal loop. The observation that several consecutive non-canonical base-pairs can stably co-exist with Watson-Crick base-pairs greatly increases the limited repertoire of irregular DNA folds and reveals the possibility for unusual structural formation in the functionally important genomic regions that have potential to become single-stranded.  相似文献   

8.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

9.
A personal computer program to visualize and compare the property of double-stranded DNA surface has been developed. Comparison of the surface property between Watson-Crick base-pairs in B-form DNA has elucidated that the base-pair replacement between a "degenerated base-pairs" conserves the pattern of potential hydrogen-bonding sites in both major and minor grooves. The idea of the "degenerated base-pairs" was applied for the problem of the base-sequence variation from the consensus sequence in the -35 region of E. coli promoter. The sequence variation is found to have tendency to occur among the degenerated base-pairs.  相似文献   

10.
The residence time of the bound water molecules in the antisense oligodeoxyribonucleotides containing 7'-alpha-methyl (TMe) carbocyclic thymidines in duplex (I), d5'(1C2G3C4G5A6A7TMc8TMe9C10G11C12G)23', and 6'-alpha-hydroxy (TOH) carbocyclic thymidines in duplex (II), d5'(1C2G3C4G5AOH6AOH7TOH8 TOH9C10G11C12G)2(3), have been investigated using a combination of NOESY and ROESY experiments. Because of the presence of 7'-alpha-methyl groups of TMe in the centre of the minor groove in duplex (I), the residence time of the bound water molecule is shorter than 0.3 ns. The dramatic reduction of the residence time of the water molecule in the minor groove in duplex (I) compared with the natural counterpart has been attributed to the replacement of second shell of hydration and disruption of hydrogen-bonding with 04' in the minor groove by hydrophobic alpha-methyl groups, as originally observed in the X-ray study. This effect could not be attributed to the change of the width of the minor groove because a comparative NMR study of the duplex (I) and its natural counterpart showed that the widths of their minor grooves are more or less unchanged (r.m.s.d change in the core part is <0.63A). For duplex (II) with polar 6'-alpha-hydroxyl groups pointed to the minor groove, the correlation time is much longer than 0.36 ns as a result of the stabilising hydrogen-bonding interaction with N3 or 02 of the neighbouring nucleotides.  相似文献   

11.
Stable DNA loop structures closed by a novel G.C base-pair have been determined for the single-residue d(GXC) loops (X=A, T, G or C) in low-salt solution by high-resolution nuclear magnetic resonance (NMR) techniques. The closing G.C base-pair in these loops is not of the canonical Watson-Crick type, but adopts instead a unique sheared-type (trans Watson-Crick/sugar-edge) pairing, like those occurring in the sheared mismatched G.A or A.C base-pair, to draw the two opposite strands together. The cytidine residue in the closing base-pair is transformed into the rare syn domain to form two H-bonds with the guanine base and to prevent the steric clash between the G 2NH(2) and the C H-5 protons. Besides, the sugar pucker of the syn cytidine is still located in the regular C2'-endo domain, unlike the C3'-endo domain adopted for the pyrimidines of the out-of-alternation left-handed Z-DNA structure. The facile formation of the compact d(GXC) loops closed by a unique sheared-type G(anti).C(syn) base-pair demonstrates the great potential of the single-stranded d(GXC) triplet repeats to fold into stable hairpins.  相似文献   

12.
Site-directed mutations were introduced in the connecting loops and one of the two stem regions of the RNA pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. The kinetic parameters of valylation for each mutated RNA were determined in a cell-free extract from wheat germ. Structure mapping was performed on most mutants with enzymic probes, like RNase T1, nuclease S1 and cobra venom ribonuclease. An insertion of four A residues in the four-membered connecting loop L1 that crosses the deep groove of the pseudoknot reduces aminoacylation efficiency. Deletions up to three nucleotides do not affect aminoacylation or RNA pseudoknot formation. Deletion of the entire loop abolishes aminoacylation. Although elimination of the pseudoknot is presumed, this could not be demonstrated. Unlike the mutations in loop L1, all mutations in the three-membered connecting loop L2 that crosses the shallow groove of the RNA pseudoknot decrease the aminoacylation efficiency considerably. Nonetheless, the RNA pseudoknot is still present in most mutated RNAs. These results indicate that a number of mutations can be introduced in both loops without abolishing aminoacylation. Results obtained with the introduction of mismatches and A.U base-pairs in stem S1 of the pseudoknot, containing three G.C base-pairs in wild-type RNA, indicate that the pseudoknot is only marginally stable. Our estimation of the gain of free energy due to the pseudoknot formation is at most 2.0 kcal/mol. The pseudoknot structure can, however, be stabilized upon binding the valyl-tRNA synthetase.  相似文献   

13.
2'-O-ribose methylation of eukaryotic ribosomal RNAs is guided by RNA duplexes consisting of rRNA and box C/D small nucleolar (sno)RNA sequences, the methylated sites invariably mapping five positions apart from the D box. Here we have analyzed the RNA duplex pairing constraints by investigating the features of 415 duplexes from the fungus, plant and animal kingdoms, and the evolution of those duplexes within the 124 sets they group into. The D-box upstream 1st and >or=15th positions consist of Watson-Crick base-pairs, G:U base-pairs and mismatched bases with ratios close to random assortments; these positions display single base differences in >60% of the RNA duplex sets. The D-box upstream 2nd to 11th positions have >90% Watson-Crick base-pairs; they display single base mutations with a U-shaped distribution of lower values of 0% and 1.6% at the methylated site 5th and 4th positions, and double compensatory mutations leading to new Watson-Crick base-pairs with an inverted U-shaped distribution of higher values at the 8th to 11th positions. Half of the single mutations at the 3rd to 11th positions resulted in G:U base-pairing, mainly through A-->G mutations in the rRNA strands and C-->T mutations in the snoRNA strands. Double compensatory mutations at the 3rd to 11th positions are extremely frequent, representing 36% of all mutations; they frequently arose from an A-->G mutation in the rRNA strands followed by a T-->C mutation in the snoRNA strands. Differences in the mutational pathways through which the rRNA and snoRNA strand evolved must be related to differences in the rRNA and snoRNA copy number and gene organization. Altogether these data identify the D-box upstream 3rd to 11th positions as box C/D snoRNA-rRNA duplex cores. The impact of the pairing constraints on the evolution of the 9 base-pair RNA duplex cores is discussed.  相似文献   

14.
The mouse mammary tumor virus (MMTV) gag-pro frameshifting pseudoknot is an H-type RNA pseudoknot that contains an unpaired adenosine (A14) at the junction of the two helical stems required for efficient frameshifting activity. The thermodynamics of folding of the MMTV vpk pseudoknot have been compared with a structurally homologous mutant RNA containing a G x U to G-C substitution at the helical junction (U13C RNA), and an A14 deletion mutation in that context (U13CdeltaA14 RNA). Dual wavelength optical melting and differential scanning calorimetry reveal that the unpaired adenosine contributes 0.7 (+/-0.2) kcal mol(-1) at low salt and 1.4 (+/-0.2) kcal mol(-1) to the stability (deltaG(0)37) at 1 M NaCl. This stability increment derives from a favorable enthalpy contribution to the stability deltadeltaH = 6.6 (+/-2.1) kcal mol(-1) with deltadeltaG(0)37 comparable to that predicted for the stacking of a dangling 3' unpaired adenosine on a G-C or G x U base pair. Group 1A monovalent ions, NH4+, Mg2+, and Co(NH3)6(3+) ions stabilize the A14 and deltaA14 pseudoknots to largely identical extents, revealing that the observed differences in stability in these molecules do not derive from a differential or specific accumulation of ions in the A14 versus deltaA14 pseudoknots. Knowledge of this free energy contribution may facilitate the prediction of RNA pseudoknot formation from primary nucleotide sequence (Gultyaev et al., 1999, RNA 5:609-617).  相似文献   

15.
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.  相似文献   

16.
Three variants of minimized hepatitis delta virus (HDV) RNA ribozyme systems designed on the basis of the "pseudoknot" model were synthesized and their tertiary interactions were analyzed by NMR spectroscopy. Rz-1 is a cis-acting ribozyme system (the cleaved form, 56-mer) in which stem IV is deleted from the active domain of genomic HDV RNA. Rz-1 was uniformly labeled with stable isotopes, 13C and 15N. Rz-2 is a trans-acting ribozyme system (substrate: 8-mer, the cytidine residue at the cleavage site is replaced by 2'-O-methylcytidine; enzyme: 16-mer plus 35-mer). Rz-2 was partially labeled with stable isotopes in guanosine residues of enzyme 35mer. Rz-4 is a trans-acting ribozyme system (substrate: 8mer, the cytidine residue at the cleavage site is replaced by 2'-O-methylcytidine; enzyme 53mer) which was designed by Perrotta and Been. Rz-4 has the same sequence and an extra loop closing stem IV. From 2D-NOESY and 2D-HSQC (except for Rz-4) spectra, it was suggested each ribozyme forms "pseudoknot" type structure in solution. Additionally, it was found that G38 of Rz-1, G28 and G29 of Rz-2 and Rz-4 form base-pairs. These novel base-pairs are observed in the crystal structure of a modified genomic HDV RNA. From temperature change experiment of Rz-2, the imino proton signal of G28 disappeared at 50 degrees C earlier than the other corresponding signals. Upon MgCl2 titration of Rz-2, this signal showed the largest shift.  相似文献   

17.
Guanine-uracil (G.U) wobble base-pairs are a detrimental lesion in DNA. Previous investigations have shown that such wobble base-pairs are more prone to base-opening than the normal G.C base-pairs. To investigate the sequence-dependence of base-pair opening we have performed 5ns molecular dynamics simulations on G.U wobble base-pairs in two different sequence contexts, TGT/AUA and CGC/GUG. Furthermore, we have investigated the effect of replacing the guanine base in each sequence with a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Our results indicate that each sequence opens spontaneously towards the major groove in the course of the simulations. The TGT/AUA sequence has a greater proportion of structures in the open state than the CGC/GUG sequence. Incorporation of 6MI yields wobble base-pairs that open more readily than their guanine counterparts. In order of increasing open population, the sequences are ordered as CGC相似文献   

18.
We report steady-state and time-resolved fluorescence studies with the single tryptophan protein, Staphylococcus aureus A, and several of its site-directed mutants. A couple of these mutants, nuclease-conA and nuclease-conA-S28G (which are hybrid proteins containing a six amino acid beta-turn substitute from concanavalin A), are found to have a much lower thermodynamic stability than the wild type. The thermal transition temperatures for nuclease-conA and S28G are 32.8 and 30.5 degrees C, which are about 20 degrees C lower than the Tm for wild-type nuclease A. These mutant proteins also are denatured by a much lower concentration of the denaturants urea and guanidine hydrochloride. We also show that an unfolding transition in the structure of the nuclease-conA hybrids can be induced by relatively low hydrostatic pressure (approximately 700 bar). The free energy for unfolding of nuclease-conA (and nuclease-conA-S28G) is found to be only 1.4 kcal/mol (and 1.2 kcal/mol) by thermal, urea, guanidine hydrochloride, and pressure unfolding. Time-resolved fluorescence intensity and anisotropy measurements with nuclease-conA-S28G show the temperature-, urea-, and pressure-perturbed states each to have a reduced average intensity decay time and to depolarize with a rotational correlation time of approximately 1.0 ns (as compared to a rotational correlation time of 11 ns for the native form of nuclease-conA-S28G at 20 degrees C).  相似文献   

19.
The solution structure of a 22 nt RNA hairpin and its complex with Co(NH(3))(6)(3+) bound to the GAAA tetraloop has been determined by NMR spectroscopy. Co(NH(3))(6)(3+) has a similar geometry to Mg(H(2)O)(6)(2+) and can be used as a probe for binding sites of completely solvated magnesium ions. The hairpin contains tandem G.A mismatches, similar to the P5abc region of a group I intron, and is closed by a GAAA tetraloop. The tandem G.A mismatches are imino hydrogen bonded in contrast with the sheared G.A mismatches found in a different context in the crystal structure of the P4-P6 domain. Chemical shift changes of the imino protons upon titration of the RNA hairpin with Mg(2+) and with Co(NH(3))(6)(3+) were used to identify ion-binding sites. Paramagnetic resonance broadening upon titration with Mn(2+) was also used. The titration curves gave dissociation binding constants for the magnesium ions in the millimolar range, similar to the binding in the major groove of RNA at tandem G.U base-pairs. Although the largest chemical shift change occurred at an imino proton of one of the G.A base-pairs, no nuclear Overhauser enhancement cross-peaks between the cobalt ligand and neighboring RNA protons were seen, presumably due to the high mobility of the Co(NH(3))(6)(3+) at this site. Nuclear Overhauser enhancement cross-peaks between Co(NH(3))(6)(3+) and the GAAA tetraloop were observed, which allowed the determination of the structure of the tetraloop binding site. The Co(NH(3))(6)(3+) is bound in the major groove of the GAAA tetraloop with hydrogen bonds to guanine base N7 and to phosphate oxygen atoms of the tetraloop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号