首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacteriophages are common viruses infecting prokaryotes. In addition to their deadly effect, phages are also involved in several evolutionary processes of bacteria, such as coding functional proteins potentially beneficial to them, or favoring horizontal gene transfer through transduction. The particular lifestyle of obligatory intracellular bacteria usually protects them from phage infection. However, Wolbachia, an intracellular alpha-proteobacterium, infecting diverse arthropod and nematode species and best known for the reproductive alterations it induces, harbors a phage named WO, which has recently been proven to be lytic. Here, phage infection was checked in 31 Wolbachia strains, which induce 5 different effects in their hosts and infect 25 insect species and 3 nematodes. Only the Wolbachia infecting nematodes and Trichogramma were found devoid of phage infection. All the 25 detected phages were characterized by the DNA sequence of a minor capsid protein gene. Based on all data currently available, phylogenetic analyses show a lack of congruency between Wolbachia or insect and phage WO phylogenies, indicating numerous horizontal transfers of phage among the different Wolbachia strains. The absence of relation between phage phylogeny and the effects induced by Wolbachia suggests that WO is not directly involved in these effects. Implications on phage WO evolution are discussed.  相似文献   

2.
Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed.  相似文献   

3.
张开军  朱文超  刘静  丁秀蕾  荣霞  洪晓月 《昆虫学报》2012,55(12):1345-1354
为了明确自然种群白背飞虱Sogatella furcifera中Wolbachia和Cardinium的感染情况以及Wolbachia与其特有的WO噬菌体之间的关系, 以采自中国7个省区9个地点的白背飞虱为研究材料, 运用PCR检测的方法调查了Wolbachia, Cardinium以及WO噬菌体在各飞虱种群中的感染率和组织分布特点。结果表明: 白背飞虱广泛双重感染Wolbachia和Cardinium, 并且都表现出很高的感染率。白背飞虱各种群Cardinium的感染率几乎均为100%; Wolbachia的感染率也较高, 但雌雄虫感染率差异较大, 雌虫的感染率几乎均为100%, 而雄虫的感染率从22.2%~95.0%不等。另外, 通过不同DNA聚合酶、 不同提取方法的对比, 揭示了DNA粗提样品在基于PCR技术的胞内共生菌检测中的不足之处。对白背飞虱头部、 胸部、 腹部、 足和翅5个不同部位组织的检测结果表明, 不仅在含有生殖组织的腹部有这两类共生菌的感染, 在其他非生殖组织中同样也感染了这两类共生菌; 虽然Wolbachia和Cardinium在寄主的各个组织中均有分布, 但是两者在白背飞虱成虫(尤其是雄虫)阶段的动态变化有明显的差异。进一步对Wolbachia宿主特异性WO噬菌体的检测结果表明, 自然种群雄虫中Wolbachia的感染率与不感染个体中WO噬菌体的比率呈明显的负相关。因此推测, 雄虫中Wolbachia感染率相对较低的原因可能是由于Wolbachia基因组中溶原性的WO噬菌体受到某种因素的诱导已转化为裂解性噬菌体。研究结果为进一步揭示Wolbachia和Cardinium双重感染条件下对寄主的生殖调控作用及其机制、 垂直传播规律、 两者之间的相互关系以及进一步的应用研究等方面提供了重要的理论基础。  相似文献   

4.
于娟娟  丛斌  董辉  钱海涛 《昆虫知识》2009,46(4):547-550
WO噬菌体是侵染节肢动物体内Wolbachia的细菌病毒。人们猜测WO噬菌体可能参与控制寄主遗传改变的活动。对WO噬菌体与Wolbachia的侵染关系以及WO噬菌体在米蛾Corcyra cephalonica、黑腹果蝇Drosophila melanogaster不同地理种群和世代间存在的稳定性进行初步研究。结果表明,WO噬菌体是侵染胞内菌Wolbachia的专性病毒,WO噬菌体稳定的存在于米蛾和黑腹果蝇的种群和世代中。据此推测,WO噬菌体与Wolbachia很可能经历长期的协同进化过程。  相似文献   

5.
A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host.  相似文献   

6.
Wolbachia are obligatory intracellular and maternally inherited bacteria, known to infect many species of arthropod. In this study, we discovered a bacteriophage-like genetic element in Wolbachia, which was tentatively named bacteriophage WO. The phylogenetic tree based on phage WO genes of several Wolbachia strains was not congruent with that based on chromosomal genes of the same strains, suggesting that phage WO was active and horizontally transmitted among various Wolbachia strains. All the strains of Wolbachia used in this study were infected with phage WO. Although the phage genome contained genes of diverse origins, the average G+C content and codon usage of these genes were quite similar to those of a chromosomal gene of Wolbachia. These results raised the possibility that phage WO has been associated with Wolbachia for a very long time, conferring some benefit to its hosts. The evolution and possible roles of phage WO in various reproductive alterations of insects caused by Wolbachia are discussed. Received: 28 January 2000 / Accepted: 3 August 2000  相似文献   

7.
8.
Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that despite the phage's rampant mobility between coinfections, the prophage's genome displays features of constraint related to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate, independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in composition with genes of similar function grouping together, the modules are generally not interchangeable with other unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in phages of obligate intracellular bacteria.  相似文献   

9.
Host-microbe symbioses involving bacterial endosymbionts comprise some of the most intimate and long-lasting interactions on the planet. While restricted gene flow might be expected due to their intracellular lifestyle, many endosymbionts, especially those that switch hosts, are rampant with mobile DNA and bacteriophages. One endosymbiont, Wolbachia pipientis, infects a vast number of arthropod and nematode species and often has a significant portion of its genome dedicated to prophage sequences of a virus called WO. This phage has challenged fundamental theories of bacteriophage and endosymbiont evolution, namely the phage Modular Theory and bacterial genome stability in obligate intracellular species. WO has also opened up exciting windows into the tripartite interactions between viruses, bacteria, and eukaryotes.  相似文献   

10.
By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.  相似文献   

11.
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.  相似文献   

12.
Wolbachia is a group of obligate symbiotic bacteria found in many insects and other arthropods. The presence of Wolbachia alters reproduction in the host, but the mechanisms are unknown. Molecular biological studies of Wolbachia have delayed significantly, and one of the reasons is the lack of transformation techniques of this bacterium. In the present study, bacteriophage particles were isolated from Wolbachia for the first time. The purified phage had an isometric head that was approximately 40 nm in diameter and contained linear double-stranded DNA of approximately 20 kbp. Partial sequence information (total of 20,484 bp) revealed that there were 24 open reading frames including a structural gene module, and genes for replication and lysogenic conversion. This bacteriophage is the only known mobile genetic element potentially used for transformation of Wolbachia.  相似文献   

13.
Bacteriophages of Wolbachia bacteria have been proposed as a potential transformation tool for genetically modifying mosquito vectors. In this study, we report the presence of the WO-B class of Wolbachia-associated phages among natural populations of several mosquito hosts. Eighty-eight percent (22/25) of Wolbachia-infected mosquito species surveyed were found to contain WO-B phages. WO-B phage orf7 sequence analysis suggested that a single strain of WO-B phage was found in most singly (23/24) or doubly (1/1) Wolbachia-infected mosquitoes. However, the single Wolbachia strain infecting Aedes perplexus was found to harbour at least two different WO-B phages. Phylogenetic analysis suggested that horizontal transmission of WO-B phages has occurred on an evolutionary scale between the Wolbachia residing in mosquitoes. On an ecological scale, a low trend of co-transmission occurred among specific WO-B phages within Wolbachia of each mosquito species. Assessment of the density of WO-B phage by real-time quantitative polymerase chain reaction (RTQ-PCR) revealed an average relative density of 7.76 x 10(5)+/- 1.61 x 10(5) orf7 copies per individual mosquito for a single Wolbachia strain infecting mosquitoes, but a threefold higher density in the doubly Wolbachia-infected Aedes albopictus. However, the average combined density of WO-B phage(s) did not correlate with that of their Wolbachia hosts, which varied in different mosquito species. We also confirmed the presence of WO-B-like virus particles in the laboratory colony of Ae. albopictus (KLPP) morphologically, by transmission electron microscopy (TEM). The viral-like particles were detected after purification and filtration of Ae. albopictus ovary extract, suggesting that at least one WO-B-like phage is active (temperate) within the Wolbachia of this mosquito vector. Nevertheless, the idea of utilizing these bacteriophages as transformation vectors still needs more investigation and is likely to be unfeasible.  相似文献   

14.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI), resulting in abortive embryonic development. One Wolbachia host, Culex pipiens complex mosquitoes, displays high levels of variability in both CI crossing types (cytotypes) and DNA markers. We report here an analysis of 14 mosquito strains, containing 13 Wolbachia variants, and with 13 different cytotypes. Cytotypes were Wolbachia-dependent, as antibiotic treatment rendered all strains tested compatible. Cytotype distributions were independent of geographical distance between sampling sites and host subspecies, suggesting that Wolbachia does not promote a reproductive isolation depending on these parameters. Backcross analysis demonstrated a mild restoring effect of the nuclear genome, indicating that CI is mostly cytoplasmically determined for some crosses. No correlation was found between the phenotypic and genotypic variability of 16 WO prophage and transposon markers, except for the WO prophage Gp15 gene, which encodes a protein similar to a bacterial virulence factor. However, Gp15 is partially correlated with CI expression, suggesting that it could be just linked to a CI gene.  相似文献   

15.
WO噬菌体是侵染节肢动物体内感染的Wolbachia的细菌病毒, 人们推测WO噬菌体可能参与了寄主遗传变异的过程。我们对采自中国境内4个地理种群(上海闵行、 云南普洱、 山东济宁和宁夏青铜峡)的灰飞虱Laodelphax striatellus 1~2龄若虫用抗生素HCl-tetracycline处理过的水稻饲养, 每隔20 d取样测定并比较其体内Wolbachia和WO噬菌体的感染率, 以此来初步研究灰飞虱体内WO噬菌体与Wolbachia的侵染关系, 结果表明: WO噬菌体感染率的变化趋势与其宿主Wolbachia的基本一致, 都随着时间推移逐步下降。我们进一步对未经HCl-tetracycline处理的灰飞虱, 用实时定量PCR的方法对WO噬菌体和Wolbachia在不同日龄灰飞虱雌虫体内的菌量进行测定, 结果显示, 二者菌量都随着日龄的增长有所变化, 在第8天达到最大, 二者的变化趋势基本一致。由此我们推断WO噬菌体是侵染胞内共生菌Wolbachia的专性病毒, 并且感染Wolbachia的WO噬菌体很可能是溶原性的噬菌体。  相似文献   

16.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI) resulting in abortive embryonic development. Among all the described host species, mosquitoes of the Culex pipiens complex display the highest variability of CI crossing types. Paradoxically, searches for polymorphism in Wolbachia infecting strains and field populations hitherto failed or produced very few markers. Here, we show that an abundant source of the long-sought polymorphism lies in WO prophage sequences present in multiple copies dispersed in the genome of Wolbachia infecting C. pipiens (wPip). We identified up to 66 different Wolbachia variants in C. pipiens strains and field populations and no occurrence of superinfection was observed. At least 49 different Wolbachia occurred in Southern Europe C. pipiens populations, and up to 10 different Wolbachia were even detected in a single population. This is in sharp contrast with North African and Cretan samples, which exhibited only six variants. The WO polymorphism appeared stable over time, and was exclusively transferred maternally. Interestingly, we found that the CI pattern previously described correlates with the variability of Gp15, a prophage protein similar to a bacterial virulence protein. WO prophage sequences thus represent variable markers that now open routes for approaching the molecular basis of CI, the host effects, the structure and dynamics of Wolbachia populations.  相似文献   

17.
Wolbachia bacteria in mosquitoes induce cytoplasmic incompatibility (CI), where sperm from Wolbachia-infected males can produce inviable progeny. The wPip strain in the Culex pipiens group of mosquitoes produces a complexity of CI crossing types. Several factors are thought to be capable of influencing the expression of CI including Wolbachia strain type and host genotype. In this study, the unidirectional CI that occurs between 2 C. pipiens complex laboratory strains, Col and Mol, was further investigated by nuclear genotype introgression. The unidirectional CI between Col and Mol was not found to be influenced by host genetic background, in contrast to a previous introgression study carried out using bidirectionally incompatible C. pipiens group strains. A line containing both wPip strain variants superinfection was also generated by embryonic cytoplasmic transfer. The same crossing type as the parental Col strain was observed in the superinfected line. Quantitative polymerase chain reaction demonstrated a low density of the injected wPipMol variant in the superinfected line after 18 generations, which was considered likely to be responsible for the crossing patterns observed. The Wolbachia density was also shown to be lower in the parental Mol strain males compared with Col strain males, and no inverse relationship between WO phage and Wolbachia density could be detected.  相似文献   

18.
Wolbachia are cytoplasmically inherited alpha-proteobacteria well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts they infect. Despite their obligate intracellular lifestyle which usually protects bacteria from phage infection, Wolbachia harbor a widespread temperate phage called WO. Evidences of horizontal phage transfers indicate that this phage could promote genetic exchanges between strains leading to evolutionary changes in the genomes of Wolbachia, and could be involved in the phenotypes these bacteria induced. In this study, we report the survey of Wolbachia and WO phage infections in 20 populations of the Uzifly Exorista sorbillans, a tachinid endoparasite of silkworm Bombyx mori, collected from different geographic regions of India. Previous studies demonstrated that Wolbachia is associated with positive reproductive fitness effects in this species. Polymerase chain reaction using the ftsZ gene encoding for a Wolbachia cell division protein and the orf7 capsid protein gene of the phage showed that all flies checked were infected by Wolbachia and its phage WO. Phylogenetic analyses based on the Wolbachia surface protein gene revealed 100% of double infections by the arthropod supergroups A and B. These results can serve as a valuable basis for understanding the evolution of Wolbachia bacteria and may provide information about the dynamics of Wolbachia–host associations. This knowledge could be exploited for the use of Wolbachia for effective control strategies of the Uzifly, a serious menace of the silkworm B. mori.  相似文献   

19.
Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studying of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility.  相似文献   

20.
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号