首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Calcified human permanent and primary teeth are often split to obtain pulp tissue for histochemical studies as well as unaltered dentin and surfaces for scanning electron microscopy. Various procedures have been used to cleave teeth, with different degrees of consistency. For rapid and fairly consistent splitting, a vise to the jaws of which triangular metal files have been welded has been found useful. The apices of the files were ground by an electric drill to the shape of typical teeth. Teeth to be split were grooved on their opposing external surfaces and were then cracked open between the file blades upon application of pressure by the vise. Teeth usually split lengthwise, exposing the entire pulp organ in one section and an empty pulp chamber-root canal in the other. This facilitated rapid penetration of fixative into pulp, and easier removal of pulp tissue in toto, as well as providing fresh enamel and dentin surfaces suitable for scanning electron microscopy.  相似文献   

2.
Abstract Teeth are generally used for actions in which they experience mainly compressive forces acting toward the base. The ordered tooth enamel(oid) and dentin structures contribute to the high compressive strength but also to the minor shear and tensile strengths. Some vertebrates, however, use their teeth for scraping, with teeth experiencing forces directed mostly normal to their long axis. Some scraping suckermouth catfishes (Loricariidae) even appear to have flexible teeth, which have not been found in any other vertebrate taxon. Considering the mineralized nature of tooth tissues, the notion of flexible teeth seems paradoxical. We studied teeth of five species, testing and measuring tooth flexibility, and investigating tooth (micro)structure using transmission electron microscopy, staining, computed tomography scanning, and scanning electron microscopy-energy-dispersive spectrometry. We quantified the extreme bending capacity of single teeth (up to 180°) and show that reorganizations of the tooth (micro)structure and extreme hypomineralization of the dentin are adaptations preventing breaking by allowing flexibility. Tooth shape and internal structure appear to be optimized for bending in one direction, which is expected to occur frequently when feeding (scraping) under natural conditions. Not all loricariid catfishes possess flexible teeth, with the trait potentially having evolved more than once. Flexible teeth surely rank among the most extreme evolutionary novelties in known mineralized biological materials and might yield a better understanding of the processes of dentin formation and (hypo)mineralization in vertebrates, including humans.  相似文献   

3.
The aim of this study is to investigate the influence of different etching times on demineralized dentin surface morphology using scanning electron microscopy and qualitative line microanalysis of chemical structure. Two sample groups, consisting of 30 first premolar teeth in each group, were established. Teeth were cut at the half-distance between the enamel-dentin junction and the pulp. The first group of specimens was etched for 10 seconds and the second group for 30 seconds. 37% ortophosphoric acid was used. SEM (scanning electron microscopy) was utilized to observe the following parameters: number and diameter of dentinal tubules, dentinal and intertubular dentinal surface percentage, appearance of the dentin surface porous zone containing smear layer and demineralized residual collagen particles with dentin demineralization products in acid globules, and dissolved peritubular dentin cuff. After calculating measurements of central tendency (X,C, Mo, SD), Kolmogorov-Smirnov and Student t-test were performed to confirm the quantitative results, and the chi2-test was run to produce qualitative data. In contrast to the 10-second etching time, the increased etching time of 30 seconds resulted in the following findings: (1) an increased number of dentinal tubules (p < 0.05), (2) an increase in dentinal tubule diameter (p < 0.05), (3) an increase in dentinal tubule surface percentage (p < 0.001), (4) a decrease in intertubular dentinal surface percentage (p < 0.001), (5) appearance of dentin surface porous zone containing smear layer and demineralized residual collagen particles with dentin demineralization products in acid globules (p < 0.001), and (6) completely dissolved peritubular dentin cuff (p <0.001). Therefore, different etching times using the same phosphoric acid concentration result in different morphological changes in demineralized dentin surface. Moreover, based on a comparison with current studies, prolonged etching time causes morphological changes to dentin surface. Such changes, have, in turn, negative effects on the dentin hybridization process.  相似文献   

4.
The purpose of this study was to compare the fatigue and tensile strengths of radicular dentin. Forty bovine lower central incisors were used, twenty teeth for the fatigue test and twenty teeth for the tensile test. Bovine teeth were each sectioned into coronal and radicular portions. Dentin slabs of 1mm thickness were prepared along the radicular tooth using a low-speed cutting machine and trimmed into dumbbell-shaped specimens. A dentin slab was harvested from each tooth. Subsequently, fatigue and tensile tests were performed in Hank's balanced saline solution at 37 °C. The staircase method was employed to determine fatigue strength and its standard deviation. Fracture surfaces were observed by scanning electron microscopy. Mean fatigue strength and tensile strength were 44.3±5.0 and 84.4±8.3 MPa, respectively. The fatigue strength of radicular dentin was significantly lower than the tensile strength. The fatigue strength of radicular dentin was only approximately one half of the tensile strength.  相似文献   

5.
To investigate the effects of open dentinal tubules on the morphological and functional characteristics of dental pulp cells. Morphological changes in human dental pulp cells that were seeded onto dentin discs with open dentinal tubules were investigated on days 1, 2, 4, and 10 of culture using scanning electron microscopy and fluorescence microscopy. Samples collected on days 1, 3, 6, 8, and 10 of culture were evaluated for cell proliferation rate and alkaline phosphatase activity. Cultured human dental pulp cells developed a columnar or polygonal morphology and monopolar cytoplasmic processes that extended into the dentinal tubules. The cells formed a multilayer and secreted an extracellular matrix onto the cell surface. Scanning electron microscopy and fluorescence microscopy revealed polarized organization of odontoblasts. Cells seeded onto dentin discs proliferated minimally but showed high levels of ALP activity. Dental pulp cells seeded onto treated dentin discs develop an odontoblastlike phenotype, which may be a potential alternative for use in experimental research on dentinogenesis.  相似文献   

6.
Fossil teeth are used for palaeoenvironmental reconstructions. Among the criteria used, the geochemical composition is favoured, because it is said that the enamel is exempt from diagenetic changes. The combined microstructural and chemical analyses of rodent incisors from the cave of El Hahroura 2 (Morocco, Middle Palaeolithic–Neolithic) using scanning electron microscopy, an electron microprobe and FTIR spectroscopy show that all teeth were preserved in apatite. Nevertheless, the microstructure of both dentine and enamel is altered, as well as their chemical composition. Teeth excavated from the upper layers are already diagenetically modified despite being from the Neolithic. Teeth from three older stratigraphic layers are also altered but with a different pattern. Up to now, a direct correlation of the morphological and structural/compositional preservation has not been possible, showing that to use only one criterion to infer the quality of the preservation is not sufficient. Moreover, palaeoecological or palaeoenvironmental reconstructions based on geochemical data without control of the dental microstructure may be biased.  相似文献   

7.
8.
The teeth of the adult plethodontid salamander, Plethodon cinereus, were examined by light and electron microscopy with emphasis on the ringlike zone of uncalcified dentin that divides the calcified portion of each tooth into a proximal pedestal and a distal apex. The uncalcified region displays radial asymmetry, forming an integral part of the posterior wall of the tooth but bulging into the pulp cavity anteriorly, thus forming a hingelike structure. All portions of the dentin, including the uncalcified region, are composed predominantly of collagenous fibers but lack elastin. In scanning electron micrographs of teeth from which the oral mucosa has been removed, the location of the anterior uncalcified hinge is marked externally by a notch-like articulation of the apex and pedestal. Sites of transition between calcified and uncalcified areas of the dentin show no special modifications in transmission electron micrographs, but collagenous fibers in calcified portions are associated with more electron-dense amorphous material than are those in the uncalcified region. Odontoblasts associated with the uncalcified region possess ultrastructural features closely resembling those of odontoblasts found in calcified areas. The uncalcified region seems to afford the teeth a certain degree of flexibility, and the asymmetry of the region appears to allow the teeth to flex only in a posterior direction, thus facilitating the entry of living prey but hindering its escape. The uncalcified region also seems to permit the apex of a tooth to break away from its pedestal without damage to underlying bone.  相似文献   

9.
Teeth were incompletely demineralized by immersion in unchanged 10% formic acid for 7 days. Reprecipitation deposits of secondary calcium phosphate were present in the dentin and soft tissues of the dental pulp and, if the final pH was 3 or greater, in the remnants of the periodontal ligament. The deposits in the dentin appeared to be intratubular. Deminieralized sections of teeth suspended in supersaturated solutions of brushite contained similar deposits in the soft tissues. It is suggested that reprecipitation of secondary calcium phosphates is a frequent intermediate stage during demineralization with formic acid.  相似文献   

10.
Stem cells and tooth tissue engineering   总被引:5,自引:0,他引:5  
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.  相似文献   

11.
Tooth development in Latimeria was studied with the use of light microscopy, polarized light microscopy and microradiography. Teeth develop from cells derived directly from the basal layer of the oral epithelium in areas where teeth have been shed or are being resorbed. The teeth are composed of true enamel, orthodentine and pulp tissues. Attachment is accom-plished by bony attachment ankylosing the teeth to the basal bone of dental plates. The histologic picture of Latimeria teeth resembles more closely the teeth of tetrapods than those of most bony fish.  相似文献   

12.
Distribution of calcium and phosphorus was investigated with quantitative and qualitative methods in teeth of rats chronically treated with low doses of corticosteroids for 3 generations. In animals from 2nd and 3rd generation, scanning electron microscopy revealed focal lesions in enamel and dentin. The disturbances of the mineral metabolism in teeth of corticosteroid-treated rats were also reflected by abnormal calcium and phosphorus content in enamel and dentin, as assessed by X-ray microanalysis.  相似文献   

13.
Most nonmammalian species replace their teeth continuously (so-called polyphyodonty), which allows morphological and structural modifications to occur during ontogeny. We have chosen Pleurodeles waltl, a salamander easy to rear in the laboratory, as a model species to establish the morphological foundations necessary for future molecular approaches aiming to understand not only molecular processes involved in tooth development and replacement, but also their changes, notably during metamorphosis, that might usefully inform studies of modifications of tooth morphology during evolution. In order to determine when (in which developmental stage) and how (progressively or suddenly) tooth modifications take place during ontogeny, we concentrated our observations on a single tooth family, located at position I, closest to the symphysis on the left lower jaw. We monitored the development and replacement of the six first teeth in a large growth series ranging from 10-day-old embryos (tooth I1) to adult specimens (tooth I6), using light (LM), scanning (SEM), and transmission electron (TEM) microscopy. A timetable of the developmental and functional period is provided for the six teeth, and tooth development is compared in larvae and young adults. In P. waltl the first functional tooth is not replaced when the second generation tooth forms, in contrast to what occurs for the later generation teeth, leading to the presence of two functional teeth in a single position during the first 2 months of life. Larval tooth I1 shows dramatically different features when compared to adult tooth I6: a dividing zone has appeared between the dentin cone and the pedicel; the pulp cavity has enlarged, allowing accommodation of large blood vessels; the odontoblasts are well organized along the dentin surface; tubules have appeared in the dentin; and teeth have become bicuspidate. Most of these modifications take place progressively from one tooth generation to the next, but the change from monocuspid to bicuspid tooth occurs during the tooth I3 to tooth I4 transition at metamorphosis.  相似文献   

14.
Dentin of human teeth is a vital hydrated tissue. It is strongly sensitive to dehydration and drying that are commonly used in preparation of samples for scanning electron microscopy. Experience in examination of dentine surfaces of extracted human third molars using contact mode atomic force microscopy under moist conditions is described. The examined dentine surfaces are modified by laser radiation produced by a pulsed Nd:YAG laser that leads to sealing of open dentinal tubules under suitable conditions that are reached after covering dentine surfaces with dye agents. Out of four investigated dye agents erythrosin solution in water has been found the most suitable and the lower and upper limits of pulse energies for sealing of dentinal tubules have been set.  相似文献   

15.
16.
目的:建立上颌第一前磨牙三维模型,以辅助牙体解剖学数字化教学和指导临床根管治疗术。方法:对人离体上颌第一前磨牙通过ConebeamCT扫描,获得DICOM格式影像,将获得的影像定位后利用Mimicsl0.0三维重建软件采集牙釉质、牙本质及髓腔的点数据,然后将采集到的点数据导入到MagicslO.0软件进行面网格化,将网格化后的图像标本进行光滑处理后保存,再次利用MimicslO.0三维重建软件进行数据处理,最终获得清晰的牙体及根管系统三维立体图像。结果:准确的建立了包含牙釉质、牙本质、牙髓腔的三维立体模型。结论:本实验方法建立的上颌第一前磨牙的三维模型,具有极高的真实性和精确性,对辅助教学、指导临床根管治疗都具有重要意义。为牙体解剖教学和口腔临床应用提供了一种简捷而精确的建模方法。  相似文献   

17.
In response to microbial invasion of dentin odontoblasts secrete an altered calcified matrix termed reactionary dentin (Rd). 3D reconstruction of focused-ion-beam scanning electron microscopy (FIB-SEM) image slices revealed helical tubular structures in Rd that contrasted with regular cylindrical tubules characteristic of dentin from healthy teeth and affected so-called physiological dentin (Pd) lying exterior to Rd. This helical structure in Rd provided effective constriction of tubule lumen diameter that formed a barrier to bacterial advance towards the dental pulp. SEM of resin cast preparations revealed altered extension of odontoblast processes through Rd. The distribution of key mineral elements was studied by combination of 3D reconstruction of focused-ion-beam based X-ray microanalysis (FIB-EDS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). There was a marked redistribution of calcium and phosphorous in Rd together with an increase of diffusely deposited magnesium compatible with the mineral deposition phase of synthesis of this altered matrix. Changes in tubule structure and mineral content characteristic of Rd are consistent with reduced hardness and lower elastic modulus reported for this matrix. Findings provide insight into the unique structure of Rd synthesised as a primary response to infection.  相似文献   

18.
An investigation of lymphatic vessels in the feline dental pulp   总被引:1,自引:0,他引:1  
The existence of lymphatic vessels in the dental pulp has been a matter of continuing controversy. We have now used light microscopy to examine semithin transverse sections of perfusion-fixed incisors and canines in cats. Lymphatics were found in all the teeth studied. In most teeth they were present in the coronal, middle, and apical regions of the pulp; but in a few they were lacking coronally and in the middle. Within individual teeth, lymphatics were found in the subodontoblastic zone or more centrally in the pulp; but none were found in the odontoblast layer or in the pulp horns. Vessels located by light microscopy were subsequently examined by transmission electron microscopy. Their ultrastructural features were typical of lymphatics and included irregular, attenuated endothelium with adjacent cells joined in different ways. Occasional gaps connected the extracellular spaces with their lumens, and abluminal endothelial projections appeared to form open end bulbs. There was very little basement membrane, but anchoring filaments were found near the abluminal surface of the endothelium and near collagen fibrils. The total cross-sectional area of lymphatic vessels was measured in semithin sections and, with pulp area, increased from the coronal region to the middle. However, both areas decreased from the middle to the apical region suggesting either that lymph flows faster as it reaches the foramens of the apical delta or that some vessels leave the tooth through lateral root canals. Using the methods of light and transmission electron microscopy, therefore, we have shown that pulp lymphatic vessels exist. Questions remain, however, about their distribution within teeth, variations between teeth, and routes of exit from teeth.  相似文献   

19.
The non-secretory ameloblasts present at the enamel-free surfaces of maxillary teeth in the frog Rana pipiens were examined by electron microscopy at different stages of tooth development. Their main fine structural features seem to reflect a transport function. During early tooth development, the non-secretory ameloblasts adjacent to odontoblasts and predentin exhibit extensive lateral surface specializations and numerous cytoplasmic vesicles. During late tooth development, the non-secretory ameloblasts adjacent to mineralizing dentin show numerous cellular junctions, well-developed intercellular channels with numerous interdigitating processes and labyrinthine configurations at their distal surfaces. An intact basal lamina is present between the non-secretory ameloblasts and the dentin surface until the dentin becomes fully mineralized. At this stage the adjacent cells no longer exhibit surface specializations. It is suggested that the non-secretory ameloblasts may participate in the mineralization of adjacent dentin at the enamel-free surfaces. This surface dentin becomes fully mineralized at a later stage of development than the underlying dentin.  相似文献   

20.
Dentin sialophosphoprotein (Dspp) is mainly expressed in teeth by the odontoblasts and preameloblasts. The Dspp mRNA is translated into a single protein, Dspp, and cleaved into two peptides, dentin sialoprotein and dentin phosphoprotein, that are localized within the dentin matrix. Recently, mutations in this gene were identified in human dentinogenesis imperfecta II (Online Mendelian Inheritance in Man (OMIM) accession number 125490) and in dentin dysplasia II (OMIM accession number 125420) syndromes. Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure. Electron microscopy revealed an irregular mineralization front and a lack of calcospherites coalescence in the dentin. Interestingly, the levels of biglycan and decorin, small leucine-rich proteoglycans, were increased in the widened predentin zone and in void spaces among the calcospherites in the dentin of null teeth. These enhanced levels correlate well with the defective regions in mineralization and further indicate that these molecules may adversely affect the dentin mineralization process by interfering with coalescence of calcospherites. Overall, our results identify a crucial role for Dspp in orchestrating the events essential during dentin mineralization, including potential regulation of proteoglycan levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号