首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

2.
Two genes cloned from Eucalyptus globulus, Eucalyptus LeaFy (ELF1 and ELF2), have sequence homology to the floral meristem identity genes LEAFY from Arabidopsis and FLORICAULA from Antirrhinum. ELF1 is expressed in the developing eucalypt floral organs in a pattern similar to LEAFY while ELF2 appears to be a pseudo gene. ELF1 is expressed strongly in the early floral primordium and then successively in the primordia of sepals, petals, stamens and carpels. It is also expressed in the leaf primordia and young leaves and adult and juvenile trees.The ELF1 promoter coupled to a GUS reporter gene directs expression in transgenic Arabidopsis in a temporal and tissue-specific pattern similar to an equivalent Arabidopsis LEAFY promoter construct. Strong expression is seen in young flower buds and then later in sepals and petals. No expression was seen in rosette leaves or roots of flowering plants or in any non-flowering plants grown under long days. Furthermore, ectopic expression of the ELF1 gene in transgenic Arabidopsis causes the premature conversion of shoots into flowers, as does an equivalent 35S-LFY construct. These data suggest that ELF1 plays a similar role to LFY in flower development and that the basic mechanisms involved in flower initiation and development in Eucalyptus are similar to those in Arabidopsis.  相似文献   

3.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

4.
Love‐in‐a‐mist (Nigella damascena) is an annual species of Ranunculaceae native to the Mediterranean Basin, characterized by delicate flowers lying on long lacy bracts. Two floral morphs of N. damascena, designated [P] and [T], differ in the identity and number of perianth organs and in the position of the perianth–androecium boundary on the meristem. They both occur in the wild. Here we describe a precise comparative schedule of floral development in the two morphs. We divided the sequence of developmental events affecting the floral meristem into six stages and related them to the height of the elongating stem and to the time elapsed after the beginning of stem elongation. In addition, we characterized the expression pattern of C‐class genes in floral organs of both morphs in an attempt to better characterize the differences between the two floral groundplans. In the [T] morph an expansion of the expression domain of AGAMOUS (AG) paralogues outside the fertile organs was observed, correlating with the change in identity of the inner perianth organs. Expression of AG‐like genes in the sepal‐like organs suggests these are not identical to true sepals at the molecular level. The morpho‐temporal framework we have defined will allow us to compare various gene expression profiles at targeted developmental stages in both morphs, providing further insight into the molecular control of the floral dimorphism in N. damascena and into the processes underlying the transition from a differentiated (bipartite) to an undifferentiated (unipartite) perianth. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 608–619.  相似文献   

5.
6.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

7.

Background and Aims

The family of MADS box genes is involved in a number of processes besides controlling floral development. In addition to supplying homeotic functions defined by the ABC model, they influence flowering time and transformation of vegetative meristem into inflorescence meristem, and have functions in roots and leaves. Three Gerbera hybrida At-SOC1-like genes (Gh-SOC1–Gh-SOC3) were identified among gerbera expressed sequence tags.

Methods

Evolutionary relationships between SOC1-like genes from gerbera and other plants were studied by phylogenetic analysis. The function of the gerbera gene Gh-SOC1 in gerbera floral development was studied using expression analysis, protein–protein interaction assays and reverse genetics. Transgenic gerbera lines over-expressing or downregulated for Gh-SOC1 were obtained using Agrobacterium transformation and investigated for their floral phenotype.

Key Results

Phylogenetic analysis revealed that the closest paralogues of At-SOC1 are Gh-SOC2 and Gh-SOC3. Gh-SOC1 is a more distantly related paralogue, grouping together with a number of other At-SOC1 paralogues from arabidopsis and other plant species. Gh-SOC1 is inflorescence abundant and no expression was seen in vegetative parts of the plant. Ectopic expression of Gh-SOC1 did not promote flowering, but disturbed the development of floral organs. The epidermal cells of ray flower petals appeared shorter and their shape was altered. The colour of ray flower petals differed from that of the wild-type petals by being darker red on the adaxial side and greenish on the abaxial surface. Several protein–protein interactions with other gerbera MADS domain proteins were identified.

Conclusions

The At-SOC1 paralogue in gerbera shows a floral abundant expression pattern. A late petal expression might indicate a role in the final stages of flower development. Over-expression of Gh-SOC1 led to partial loss of floral identity, but did not affect flowering time. Lines where Gh-SOC1 was downregulated did not show a phenotype. Several gerbera MADS domain proteins interacted with Gh-SOC1.  相似文献   

8.
9.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

10.
Eight-week-old vegetative plants of Arabidopsis thaliana, ecotype Columbia, were induced to flower by a single long day (LD). In this experimental system, it is known that the last component of the floral stimulus moves from the leaves to the apex 24-36 h after the start of the LD, and the first floral meristem is initiated by the shoot apical meristem (SAM) at 44-56 h (Corbesier et al., 1996, The Plant Journal 9: 947-952). Here we show that the rate of cell division is increased at floral transition in all SAM parts but not in the sub-apical pith cells. Mitotic activity starts to increase 24 h after the start of the LD and is two- to three-fold higher at peak times than that in non-induced plants. This activation is followed by the start of SAM enlargement at 44 h, SAM doming at 48 h, and the elongation of apical internodes (bolting) at 52 h.  相似文献   

11.
12.
The cell-cycle duration and the growth fraction were estimated in the shoot meristem of Sinapis alba L. during the transition from the vegetative to the floral condition. Compared with the vegetative meristem, the cell-cycle length was reduced from 86 to 32 h and the growth fraction, i.e. the proportion of rapidly cycling cells, was increased from 30–40% to 50–60%. These changes were detectable as early as 30 h after the start of the single inductive long day. The faster cell cycle in the evoked meristem was achieved by a shortening of the G1 (pre-DNA synthesis), S (DNA synthesis) and G2 (post-DNA synthesis) phases of the cycle. In both vegetative and evoked meristems, both-the central and peripheral zones were mosaics of rapidly cycling and non-cycling cells, but the growth fraction was always higher in the peripheral zone.Abbreviations G1 pre-DNA synthesis phase - G2 post-DNA synthesis phase - GF growth fraction - M mitosis phase - PLM percentage-labelled-mitoses method - S DNA synthesis phase - TdR thymidine  相似文献   

13.
APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA-functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1-like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA-functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C-terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence-to-flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1-1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.  相似文献   

14.
15.
Heterostyly in Primula is characterized by the development of long-styled pin and short-styled thrum flowers, with anthers midway down the corolla tube in pin flowers, and at its mouth in thrum flowers. Other differences include pollen size and stigmatic papillae length. Several linked genes at the S locus control these differences.In this study we have analyzed pin and thrum flowers through the temporal development of heteromorphy.These studies indicate that the S locus linked genes that orchestrate heteromorphic flower development act in coordination, but with different temporal and spatial dynamics. Style length is differentiated by longer style cells in pin than thrum. However, our studies on cell shape and size within the corolla tube show that a different mechanism mediates the dissimilar elevation of anthers between pin and thrum types. These studies have also revealed that upper corolla tube cells in thrum flowers are wider than those in pin flowers. This results in a larger corolla tube mouth in thrum flowers and represents a new and previously undocumented heteromorphic variation between pin and thrum flowers.  相似文献   

16.
17.
Background and Aims Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure.Methods The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used.Key Results Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants.Conclusions The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite trends in the development of ectopic flower structures may be detected, from insignificant outgrowths on awns to flowers with sterile organs. Phenotypically unstable barley double mutants provide a highly promising genetic system for the investigation of gene expression modules and trend orders.  相似文献   

18.
周洋  杨章旗  黄永利 《广西植物》2020,40(4):482-491
为了解湿地松‘松泰’小孢子叶球在发育过程形态是否有差异变化,明确其败育过程、败育方式及影响因素,为湿地松雄性不育品种利用和后期开展相关研究提供科学依据。该研究以‘松泰’s10败育系和s9可育系为材料,观察小孢子叶球形态发育变化,并对其小孢子叶球进行石蜡切片,在光学显微镜下观察小孢子发育过程。结果表明:s10败育系和s9可育系在小孢子母细胞减速分裂前无明显差异,小孢子叶球生长趋势也一致;四分体时期,s10小孢子细胞发育异常,小孢子叶球形态发育也出现异常,二者异常发育具有同步性;可育系从四分体到单核小孢子发育阶段的时间为5 d左右,而败育系持续发育长达20 d左右,持续时间为可育系的4倍。在此期间出现小孢子绒毡层细胞发育异常、降解缓慢,小孢子囊壁组织排列紊乱、降解延迟等现象,s10形成异常二核花粉,且无花粉散出。因此,推论s10小孢子败育的原因主要是小孢子囊壁细胞发育异常,其小孢子叶球形态异常,相对应的绒毡层在四分体时期发育异常,不能适时地分泌胼胝质酶来降解围绕着四分体的胼胝质壁,也不能适时地合成输送花粉形成所需能量物质,同时囊壁细胞出现降解延迟和层积,这一系列的异常变化导致不能形成正常四...  相似文献   

19.
Cell separation processes, such as abscission, are critical for plant development and play key roles from sculpting the form of the plant to scattering seeds. It is however essential that such processes are under tight temporal and spatial regulation. Floral organ abscission in Arabidopsis thaliana is regulated by a ligand-receptor module consisting of the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA (HAE) and HAESA-LIKE 2 (HSL2), and it is the restricted expression pattern of IDA that hinders cell separation from occurring in the abscission zones (AZs) of other organs where HAE and HSL2 are present. In the July issue of The Plant Cell we report on the identification of additional components acting downstream in the IDA signaling pathway. Through a screen for mutations that restore floral organ abscission in ida mutants, we identified two new alleles of the KNOTTED-LIKE HOMEOBOX gene BREVIPEDICELLUS (BP)/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1) and show that BP/KNAT1 is important in regulating the timing of floral abscission by controlling AZ cell size and by regulating KNAT2 and KNAT6.  相似文献   

20.
Before approaching anther culture as a tool to trigger an androgenic response in a new species, it is advisable to characterize and correlate flower and male gametophyte development to enable reproducible identification of the appropriate starting material. Buds and flowers of Opuntia ficus-indica cv. Gialla were classified in eight stages according to their total length at the earlier stages and the length of the corolla in flowers with emerging sepals. Due to the low condensation of chromatin in the microspore nucleus as well as in the vegetative nucleus of the bi- and tricellular pollen along with the high autofluorescence of the intricate exine, DAPI staining turned out not to be feasible in this species. Therefore an approach based on light-microscopy observation of semithin sections was used. These sections were stained with toluidine blue for general structure recognition and I2KI to study starch deposition. Correlations were made between the sequential floral and male gametophyte development. Using this approach we determined the timing of pollen formation and observed that pollen development is impaired in plants producing seedless fruits. Furthermore, anther culture was carried out with anthers collected from flower buds at stages 2 and 3. Most of the anthers produced callus, however no regeneration was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号