首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion and subsequent development of Listeria monocytogenes on stainless steel was studied in the absence and in the presence of a Staphylococcus sciuri biofilm. In the three growth media studied, the percentage of adherent cells was reduced to nearly the same extent by the presence of 1-day biofilms of Staph. sciuri for the two strains of L. monocytogenes studied. One-day biofilms of Staph. sciuri exhibited the same exopolysaccharide content per square centimetre, although they colonized from 3.5 to 35% of the stainless steel depending on the growth media. This suggests that extracellular substances rather than cell-to-cell interactions were involved in the decreased adhesion. After 3 days of culture, Staphylococcus biofilms prevented the adherent L. monocytogenes population from increasing within the biofilm, leading to an average logarithmic cfu difference of 0.9-2.7 between the pure and mixed culture. A competition for nutrients by Staph. sciuri was observed in one of the three media. A role for extracellular polysaccharides produced by the Staphylococcus biofilm in preventing the adhesion of L. monocytogenes and in modifying the balance existing between its planktonic and biofilm phase is hypothesized. A higher proportion of L. monocytogenes cells was observed in the planktonic phase in mixed cultures, suggesting that the extracellular substances produced by Staph sciuri biofilms and involved in the decreased adhesion of L. monocytogenes could modify the balance existing between planktonic and biofilm populations. In addition, co-cultures of L. monocytogenes and Staph. sciuri in broth showed competition for nutrients for Staph. sciuri in one of the three media.  相似文献   

2.
Listeria monocytogenes is a significant food-borne pathogen that is capable of adhering to and producing biofilms on processing equipment, making it difficult to eliminate from meat-processing environments and allowing potential contamination of ready-to-eat (RTE) products. We devised a fluorescence-based microplate method for screening isolates of L. monocytogenes for the ability to adhere to abiotic surfaces. Strains of L. monocytogenes were incubated for 2 days at 30 degrees C in 96-well microplates, and the plates were washed in a plate washer. The retained cells were incubated for 15 min at 25 degrees C with 5,6-carboxyfluorescein diacetate and washed again, and then the fluorescence was read with a plate reader. Several enzymatic treatments (protease, lipase, and cellulase) were effective in releasing adherent cells from the microplates, and this process was used for quantitation on microbiological media. Strongly adherent strains of L. monocytogenes were identified that had 15,000-fold-higher levels of fluorescence and 100,000-fold-higher plate counts in attachment assays than weakly adherent strains. Strongly adherent strains of L. monocytogenes adhered equally well to four different substrates (glass, plastic, rubber, and stainless steel); showed high-level attachment on microplates at 10, 20, 30, and 40 degrees C; and showed significant differences from weakly adherent strains when examined by scanning electron microscopy. A greater incidence of strong adherence was observed for strains isolated from RTE meats than for those isolated from environmental surfaces. Analysis of surface adherence among Listeria isolates from processing environments may provide a better understanding of the molecular mechanisms involved in attachment and suggest solutions to eliminate them from food-processing environments.  相似文献   

3.
Aims:  To determine whether isolates of Listeria monocytogenes differ in their ability to adsorb and form biofilms on a food-grade stainless steel surface.
Methods and Results:  Strains were assessed for their ability to adsorb to a test surface over a short time period. Although some differences in numbers of bound cells were found among the strains, there were no correlations between the degree of adsorption and either the serotype or source of the strain. The ability of each strain to form a biofilm when grown with the test surface was also assessed. With the exception of a single strain, all strains adhered as single cells and did not form biofilms. Significant differences in adherence levels were found among strains. Strains demonstrating enhanced attachment produced extracellular fibrils, whereas those which adhered poorly did not. A single strain formed a biofilm consisting of adhered single cells and aggregates of cells.
Conclusions:  Significant differences were found in the ability of various L. monocytogenes strains to attach to a test surface. In monoculture, the majority of strains did not form biofilms.
Significance and Impact of the Study:  Differences in attachment and biofilm formation among strains provide a basis to study these characteristics in L. monocytogenes .  相似文献   

4.
Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.  相似文献   

5.
The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in food-processing environment, which becomes a major concern for the food safety. The biofilm formation is strongly influenced by the availability of nutrients and environmental conditions, and particularly enhanced in poor minimal essential medium (MEM) containing glucose rather than in rich brain heart infusion (BHI) broth. To gain better insight into the conserved protein expression profile in these biofilms, the proteomes from biofilm- and planktonic-grown cells from MEM with 50?mM glucose or BHI were compared using two-dimensional polyacrylamide gel electrophoresis followed by MALDI-TOF/TOF analysis. 47 proteins were successfully identified to be either up (19 proteins) or down (28 proteins) regulated in the biofilm states. Most (30 proteins) of them were assigned to the metabolism functional category in cluster of orthologous groups of proteins. Among them, up-regulated proteins were mainly associated with the pentose phosphate pathway and glycolysis, whereas a key enzyme CitC involved in tricarboxylic acid cycle was down-regulated in biofilms compared to the planktonic states. These data implicate the importance of carbon catabolite control for L. monocytogenes biofilm formation in response to nutrient availability.  相似文献   

6.
Listeria monocytogenes is the causative agent of listeriosis, one of the most significant foodborne diseases in industrialized countries. The complete genome of the L. monocytogenes EGDe strain, belonging to the serogroup 1/2a, has been sequenced and is comprised of 2853 open reading frames. The objective of the current study was to construct a two-dimensional (2-D) database of the proteome of this strain. The soluble protein fractions of the microorganism were recovered either in the mid-log or in the stationary phase of growth at 37 degrees C. These fractions were analyzed by 2-D electrophoresis (2-DE), using immobilized pH gradient strips of various pH values (3-10, 3-6, and 5-8) for the first-dimensional separations and 12.5% acrylamide gels for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 201 protein spots corresponding to 126 different proteins were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The 2-DE maps presented here provide a first basis for further investigations of protein expression in L. monocytogenes. In this way, the comparison of proteome between cells in the exponential or stationary phase of growth at 37 degrees C allowed us to characterize 161 variations in protein spot intensity, of which 38 were identified. Among the differentially expressed proteins were ribosomal proteins (RpsF, RplJ, and RpmE), proteins involved in cellular metabolism (GlpD, PdhD, Pgm, Lmo1372, Lmo2696, and Lmo2743) or in stress adaptation (GroES and ferritin), a fructose-specific phosphotransferase enzyme IIB (Lmo0399) and different post-translational modified forms of listeriolysin (LLO).  相似文献   

7.
A partially annotated proteome reference map of the food pathogen Listeria monocytogenes was developed for exponentially growing cells under standardized, optimal conditions by using the sequenced strain EGDe (serotype 1/2a) as a model organism. The map was developed by using a reproducible total protein extraction and two-dimensional (2-D) polyacrylamide gel electrophoresis analysis procedure, and it contained 33 identified proteins representing the four main protein functional classes. In order to facilitate analysis of membrane proteins, a protein compartmentalization procedure was assessed. The method used provided partial fractionation of membrane and cytosolic proteins. The total protein 2-D profiles of three serotype 1/2a strains and one serotype 1/2b strain isolated from food were compared to the L. monocytogenes EGDe proteome. An average of 13% of the major protein spots in the food strain proteomes were not matched in the strain EGDe proteome. The variation was greater for the less intense spots, and on average 28% of these spots were not matched. Two of the proteins identified in L. monocytogenes EGDe were missing in one or more of the food isolates. These two proteins were proteins involved in the main glycolytic pathway and in metabolism of coenzymes and prosthetic groups. The two corresponding genes were found by PCR amplification to be present in the four food isolates. Our results show that the L. monocytogenes EGDe reference map is a valuable starting point for analyses of strains having various origins and could be useful for analyzing the proteomes of different isolates of this pathogen.  相似文献   

8.
9.
A Bubert  M Kuhn  W Goebel    S Khler 《Journal of bacteriology》1992,174(24):8166-8171
The major extracellular protein p60 of Listeria monocytogenes seems to be required for this microorganism's adherence to and invasion of 3T6 mouse fibroblasts but not for adherence to human epithelial Caco-2 cells. Western blot analysis with polyclonal antibodies against p60 of L. monocytogenes indicated the presence of cross-reacting proteins in the culture supernatants of all Listeria species. Protein p60 of L. monocytogenes could restore adhesion of the L. monocytogenes mutant RIII (impaired in the synthesis of p60) to mouse fibroblasts more efficiently than that of Listeria grayi. The amino acid sequences of the p60-related proteins of L. innocua, L. ivanovii, L. seeligeri, L. welshimeri, and L. grayi indicated highly conserved regions of about 120 amino acids at both the N-terminal and the C-terminal ends. The middle portions of these proteins, consisting of about 240 amino acids, varied considerably. These parts include the repeat domain consisting of repetitions of Thr (T) and Asn (N) which was present only, albeit in different arrangements, in the p60 proteins of L. monocytogenes and L. innocua. The p60-related proteins of L. grayi, L. ivanovii, L. seeligeri, and L. welshimeri each contained an insertion of 54 amino acids which was absent in the p60 proteins of L. monocytogenes and L. innocua.  相似文献   

10.
AIMS: To determine the differential adherence capabilities at three different temperatures of Listeria monocytogenes Scott A, a clinical food pathogen, and L. monocytogenes FM876, a persistent strain from a milk-processing environment, to stainless steel. METHODS AND RESULTS: Differential adherence was investigated by submerging stainless steel coupons in both 48-h Listeria monocultures and mixed cultures additionally containing Staphylococcus xylosus DP5H and Pseudomonas fragi ATCC 4973. Immunofluorescent microscopy and image analysis techniques were utilized to identify and quantify the L. monocytogenes cells adhering to the steel at 4 degrees C, 18 degrees C and 30 degrees C. The monoculture biofilms consistently contained greater L. monocytogenes numbers than the multispecies biofilms, with the persistent strain FM876 showing significantly greater adherence than strain Scott A. Optimum adherence occurred at 18 degrees C in monoculture biofilms. CONCLUSION: L. monocytogenes strains exhibit differential, temperature-dependent, adherence to stainless steel. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate temperature dependent biofilm adherence and support previous findings that persistent strains exhibit increased adherence capability.  相似文献   

11.
Cholesterol-dependent cytolysins (CDCs) are produced by a large number of pathogenic Gram-positive bacteria. Most of these single-chain proteins are secreted in the extracellular medium. Among the species producing CDCs, only two species belonging to the genus Listeria (Listeria monocytogenes and Listeria ivanovii) are able to multiply intracellularly and release their toxins in the phagosomal compartment of the infected host cell. This review provides an updated overview on the importance of listeriolysin O (LLO) in the pathogenicity of L. monocytogenes, focusing mainly on two aspects: (1) the structure-function relationship of LLO and (2) its role in intra- and extracellular signalling. We first examine the specific sequence determinants, or protein domains, that make this cytolysin so well adapted to the intracellular lifestyle of L. monocytogenes. The roles that LLO has in cellular signalling events in the context of relations to pathogenesis are also discussed.  相似文献   

12.
Virulence factors secreted by Listeria monocytogenes are known to interfere with host cellular signalling pathways. We investigated whether L. monocytogenes modulates T-cell receptor signalling by examining surface expression of proteins known to be upregulated on activated T cells. In vitro culture of murine splenocytes with L. monocytogenes resulted in a specific and dose-dependent upregulation of Fas ligand (FasL). Induction of FasL expression was also observed for pathogenic Listeria ivanovii but not for non-pathogenic Listeria innocua, indicating involvement of Listeria virulence protein(s). Examination of L. monocytogenes strains deficient in different virulence genes demonstrated that FasL upregulation was dependent on the expression of two secreted proteins: listeriolysin O (LLO) and phosphatidylcholine-preferring phospholipase C (PC-PLC). Treatment of cells with purified proteins demonstrated that LLO was sufficient for inducing FasL, while PC-PLC synergized with LLO for the induction of FasL expression. FasL-expressing cells induced by L. monocytogenes were capable of killing Fas-expressing target cells. Furthermore, L. monocytogenes infection results in upregulation of FasL on T cells in mice. These results describe a novel function for LLO and PC-PLC and suggest that L. monocytogenes may use these virulence factors to modulate the host immune response.  相似文献   

13.
Surfaces in industrial settings provide a home for resident biofilms that are likely to interact with the attachment, growth and survival of pathogens such as Listeria monocytogenes. Experimental results have indicated that L. monocytogenes cells were inhibited by the presence of a model resident flora (Lactococcus lactis) in dual-species continuous flow-biofilms, and are spatially restricted to the lower biofilm layers. Using a new, simplified individual-based model (IBM) that simulates bacterial cell growth in a three-dimensional space, the spatial arrangements of the two species were reconstructed and their cell counts successfully predicted. This model showed that the difference in generation times between L. monocytogenes and L. lactis cells during the initial stages of dual-species biofilm formation was probably responsible for the species spatialization observed and the subsequent inhibition of growth of the pathogen.  相似文献   

14.
Different methods were used to investigate biofilm growth including crystal violet staining, ATP bioluminescence and total viable count. Seven strains of Listeria monocytogenes and 8 of their derivative strains were screened for their capacity to form biofilms. Both adaptation to benzalkonium chloride (BC) and curing of plasmids did not significantly affect biofilm-forming ability. The strains of L. monocytogenes belonging to serotype 1 formed biofilms significantly better as compared to serotype 4 (P=0.0003). To estimate the efficacy of BC for biofilm elimination the best and the poorest biofilm-formers were used (C719 and LJH 381). It was observed that, L. monocytogenes strain C719 in biofilms is at least 1000 times more resistant to BC than in planktonic form. Cells present in biofilms were shown to recover and grow after BC treatment thus providing a source of recontamination. It was shown that ATP bioluminescence provides good correlation with bacterial counts of L. monocytogenes in biofilms. Staining with crystal violet, on the contrary, did not correlate with bacterial growth in biofilms in the presence of high concentrations of BC but provided information on the concentration of bacterial cells, both live and dead, attached to the surface. ATP bioluminescence was found to be a reliable method for rapid estimation of the efficacy of sanitizers for biofilm disinfection. Crystal violet staining, on the other hand, was shown to be a suitable method to monitor removal of biofilms. Our investigation showed that for Listeria biofilms concentrations of BC higher then 10 mg/ml should be applied for at least 30 min to kill almost all the live cells in biofilms. However, this concentration was still not enough to remove biofilms from the surface of plastic.  相似文献   

15.
All species of the genus Listeria secrete a major extracellular protein called p60. A comparison of the deduced amino acid sequences of all listerial p60 proteins previously indicated there were only a few regions which were unique to the pathogenic, food-borne species Listeria monocytogenes. Two of these p60 regions were chosen for the development of antibodies specific for the facultative intracellular species L. monocytogenes. Initially, these regions were characterized via epitope mapping, and this led to the development of two different synthetic peptides. Rabbits immunized with these synthetic peptides generated polyclonal antibodies that were then used in Western blot (immunoblot) analyses. Antiserum against peptide A (PepA) recognized the p60 protein in the supernatants collected from most L. monocytogenes serotypes except for several strains belonging to serotypes 4a and 4c. No p60-related protein was detected in the supernatants from other Listeria species with this anti-PepA antiserum. Antibodies raised against peptide D (PepD) reacted with p60 from all L. monocytogenes serotypes, including all 4a and 4c strains that were tested, and also showed no cross-reactivity with supernatant proteins from other Listeria species. Both antisera also detected p60 in supernatants of a large number of environmental isolates of L. monocytogenes. Besides Western blot analyses, these antisera to PepA and PepD reacted with secreted p60 in an enzyme-linked immunosorbent assay, indicating recognition of the native antigen in addition to the denatured form. These data suggest that synthetic peptides derived from the variable region of the L. monocytogenes p60 protein may be useful for the development of an immunological diagnostic assay.  相似文献   

16.
A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 x 10(2) CFU/cm2.  相似文献   

17.
Mitochondria undertake the process of oxidative phosphorylation yielding ATP for plant cell maintenance and growth. The principles of isolation and fractionation of plant mitochondrial proteins have been improved over decades, and surveys of the mitochondrial proteome in a number of plants species have been performed. Over time, many quantitative analyses of changes in the plant mitochondrial proteome have been performed by 2-D gel analyses revealing the induction, degradation and modification of mitochondrial proteins in responses to mutation, stress and development. Here, we present a saturating MS analysis of 2-D gel separable protein spots from a typical purification of Arabidopsis mitochondria identifying 264 proteins, alongside an LC-MS/MS survey by non-gel methods identifying 220 proteins. This allowed us to characterise the major mitochondrial proteins that are not observed on 2-D gels, the common contaminants and the abundance of the protein machinery of key mitochondrial biochemical pathways, and consider the impact of N-terminal pre-sequence cleavage and phosphorylation as explanations of multiple protein spots and the co-ordinates of proteins on 2-D gels.  相似文献   

18.
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in beta-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha-actinin are organized into longitudinally arranged "myofibrils" and the vimentin-containing intermediate filaments form a meshed cytoskeletal network. However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins.  相似文献   

19.
Expression of the iap gene of Listeria monocytogenes in the L. monocytogenes rough mutant RIII and in Bacillus subtilis DB104 caused the disruption of the cell chains which these two strains normally form under exponential growth conditions. The p60 protein produced by L. monocytogenes and B. subtilis DB104 also exhibited bacteriolytic activity detected in denaturing polyacrylamide gels containing heat-killed Micrococcus lysodeikticus. Purification of the p60 protein led to aggregation of p60 and loss of the cell chain disruption and bacteriolytic activities. A cysteine residue in the C-terminal part of p60 which is conserved in all p60-like proteins from the other Listeria species seems to be essential for both activities. The iap gene could not be inactivated without a loss of cell viability, indicating that p60 is an essential housekeeping protein for L. monocytogenes and probably also for other Listeria species. These data suggest that p60 possesses a murein hydrolase activity required for a late step in cell division.  相似文献   

20.
Calcium oxalate monohydrate (COM) is the major crystalline component found in kidney stones and its adhesion to renal tubular cells provokes tubular injury, which in turn enhances COM crystal adhesion. However, COM-induced toxic effects in these tubular cells remain largely unknown. We performed a proteomics study to characterize changes in the cellular proteome in MDCK distal renal tubular cells after an exposure to high-dose (1000 microg/mL) COM crystals for 48 h, at which percentage of cell death was significantly increased. Proteins were extracted from MDCK cells cultured with COM-containing or COM-free medium ( n = 5 individual flasks per group), resolved in individual 2-D gels, and stained with SYPRO Ruby fluorescence dye. Quantitative and statistical analyses revealed 53 proteins whose abundance levels were altered (25 were increased, whereas other 28 were decreased) by COM-induced toxicity. Among these, 50 were successfully identified by quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) and/or tandem MS (MS/MS) analyses. The proteomic data were clearly confirmed by 2-D Western blot analysis. While three chaperones (GRP78, Orp150 and Hsp60) were increased, other proteins involved in protein biosynthesis, ATP synthesis, cell cycle regulator, cellular structure, and signal transduction were decreased. These data provide some novel mechanistic insights into the molecular mechanisms of COM crystal-induced tubular toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号