首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the role of T helper (Th) cells in the immune response to UV-induced tumors. Repeated exposure of mice to UV radiation results in the production of suppressor T lymphocytes that facilitate tumor growth by inhibiting host immunity. To investigate whether the suppressor T cells inhibit the response to UV tumors by blocking the generation of Th, we employed an indirect method for measuring helper cell activity. We found that Th were produced in normal mice after immunization with UV-induced tumors. These Th appeared to be specific for the immunizing tumors, in contrast to the UV-induced suppressor cells, which recognize UV-induced tumors as a group. The suppressor T cells responsible for inhibiting tumor rejection have no effect on tumor-specific helper cell activity in vitro. However, UV-induced suppressor T cells transferred into unirradiated mice seem to block the generation of helper cell activity after immunization with UV-produced tumors. These results suggest the UV-induced suppressor cells may prevent tumor rejection by blocking the generation of Th.  相似文献   

2.
Stepwise immunologic selection of antigenic variants during tumor growth   总被引:2,自引:0,他引:2  
Using tumor-specific effector cells as probes, we have studied the immunologic changes that occur in tumor cells during continuous growth in a host. As a model, we used a highly immunogenic ultraviolet light (UV)-induced tumor that is rejected regularly by normal mice but grows progressively when transplanted into UV-irradiated mice. The immunogenic tumor growing continuously in these partially immunocompromised mice gave rise to genetically stable progressor variants that were poorly immunogenic. A sequence of changes in susceptibility to activated macrophages and tumor-specific cytolytic T cells was observed when serial reisolates from the continuously growing tumors were analyzed. First, the tumor cells developed resistance to the cytocidal effects of activated macrophages. This was followed by the loss of one and then a second tumor-specific antigen defined by syngeneic cytolytic T cells. The phenotypes of the developing antigen loss variants and their sequence of appearance were the same in several independent experiments, and the process was apparently determined by a hierarchy of the host's immune response to multiple independent tumor-specific antigens expressed by a single malignant cell. Our ability to generate the predicted variants in vitro before they actually appear in vivo suggests a possible approach to preventing the outgrowth of such immunoselected variants from a tumor.  相似文献   

3.

Background

CD1d-restricted invariant NKT (iNKT) cells are a subset of T lymphocytes endowed with innate effector functions that aid in the establishment of adaptive T and B cell immune responses. iNKT cells have been shown to play a spontaneous protective role against experimental tumors. Yet, the interplay between iNKT and tumor-specific T cells in cancer immune surveillance/editing has never been addressed. The transgenic adenocarcinoma of the mouse prostate (TRAMP) is a realistic model of spontaneous oncogenesis, in which the tumor-specific cytotoxic T cell (CTL) response undergoes full tolerance upon disease progression.

Principal Findings

We report here that lack of iNKT cells in TRAMP mice resulted in the appearance of more precocious and aggressive tumors that significantly reduced animal survival. TRAMP mice bearing or lacking iNKT cells responded similarly to a tumor-specific vaccination and developed tolerance to a tumor-associated antigen at comparable rate.

Conclusions

Hence, our data argue for a critical role of iNKT cells in the immune surveillance of carcinoma that is independent of tumor-specific CTL.  相似文献   

4.
Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4(+)CD25(+) regulatory T (T(reg)) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to T(reg) cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by T(reg) cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of autoimmunity.  相似文献   

5.
Cytotoxic responses of UV-irradiated mice against syngeneic UV-induced tumors were measured by using a 51Cr-release assay to determine if UV treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the "memory" response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of UV-treated mice against syngeneic, UV-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic UV-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, UV-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses.  相似文献   

6.
Depletion of CD4+CD25+Foxp3+ regulatory T cells (CD25+ T(reg)) with an anti-CD25 Ab results in immune-mediated rejection of tolerogenic solid tumors. In this study, we have examined the immune response to a mesothelioma tumor in mice after depletion of CD25+ cells to elucidate the cellular mechanisms of CD25+ T(reg), a subject over which there is currently much conjecture. Tumor rejection was found to be primarily due to the action of CD8+ T cells, although CD4+ cells appeared to play some role. Depletion of CD25+ cells resulted in an accumulation in tumor tissue of CD4+ and CD8+ T cells and NK cells that were producing the potent antitumor cytokine IFN-gamma. Invasion of tumors by CD8+ T cells was partially dependent on the presence of CD4+ T cells. Although a significant increase in the proliferation and number of tumor-specific CD8+ T cells was observed in lymph nodes draining the tumor of anti-CD25-treated mice, this effect was relatively modest compared with the large increase in IFN-gamma-producing T cells found in tumor tissue, which suggests that the migration of T cells into tumor tissue may also have been altered. Depletion of CD25+ cells did not appear to modulate antitumor CTL activity on a per cell basis. Our data suggests that CD25+ T(reg) limit the accumulation of activated T cells producing IFN-gamma in the tumor tissue and, to a lesser extent, activation and/or rate of mitosis of tumor-specific T cells in lymph nodes.  相似文献   

7.
    
The idea of immunological surveillance against cancer has existed for nearly 100 years but as no conclusive evidence has yet been published the importance of the cellular immune defense in the detection and removal of incipient or existing tumors is still a hotly debated subject. However, in order to select a relevant immunotherapeutic strategy in the treatment of cancer, a fundamental understanding of the basic immunologic conditions under which a tumor develops and exists is a prerequisite. Therefore, a murine model was set up that we hoped would enable us to confirm or reject the theory of immunological surveillance. A large panel of methylcholanthrene induced tumors was established in T-cell immunodeficient nude mice and congenic normal mice to study the influence of the immune system on developing tumors. As nude mice developed tumors fastest and with the highest incidence, we concluded that in this model the immune system constituted a ‘tumor-suppressive factor’ delaying and sometimes abrogating tumor growth, i.e. performing immune surveillance. Immunogenicity of the tumors was assessed by transplantation back to normal histocompatible mice. Tumors originating from the immunodeficient nude mice turned out to be far more immunogenic than tumors from normal mice, resulting in a high rejection rate. CD8+cytotoxic T cells were found to be indispensable for this rejection, leading to the conclusion that the cytotoxic T cells perform immune selection in normal mice, eliminating immunogenic tumor cell variants in the incipient tumor. In this review, we discuss the difficulties facing immunotherapy when conclusions are drawn from the presented observations and hypotheses.  相似文献   

8.
Many AKR spontaneous thymomas are reported to express different amounts of the major histocompatibility complex class I H-2Kk molecules. Moreover, H-2Kk-deficient AKR tumor cells are found to be more malignant when compared to tumor cells that express abundant levels of the H-2Kk molecules. To corroborate further the role of H-2Kk in tumorigenesis of AKR leukemia, we have, in this study, expressed antisense H-2Kk RNA in a high-H-2Kk-expressing and poorly tumorigenic AKR thymoma cell line 369. The down-regulation of H-2Kk molecules in the transfected 369 clones rendered them more tumorigenic in syngeneic AKR/J mice. The increase in oncogenicity correlates well with a concomitant reduction in their susceptibility to tumor-specific cytotoxic T lymphocytes in vitro. These results suggest the relevance of H-2Kk molecules in the immune surveillance of AKR tumors.  相似文献   

9.
BACKGROUND: A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors. MATERIALS AND METHODS: Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored. RESULTS: Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge. CONCLUSIONS: Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.  相似文献   

10.
Tumor-infiltrating lymphocytes (TIL) has been associated with improved survival in cancer patients. Within the tumor microenvironment, regulatory cells and expression of co-inhibitory immune checkpoint molecules can lead to the inactivation of TIL. Hence, there is a need to develop strategies that disrupt these negative regulators to achieve robust anti-tumor immune responses. We evaluated the blockade of immune checkpoints and their effect on T cell infiltration and function. We examined the ability of TIL to induce tumor-specific immune responses in vitro and in vivo. TIL isolated from tumor bearing mice were tumor-specific and expressed co-inhibitory immune checkpoint molecules. Administration of monoclonal antibodies against immune checkpoints led to a significant delay in tumor growth. However, anti-PD-L1 antibody treated mice had a significant increase in T cell infiltration and IFN-γ production compared to other groups. Adoptive transfer of in vitro expanded TIL from tumors of anti-PD-L1 antibody treated mice led to a significant delay in tumor growth. Blockade of co-inhibitory immune checkpoints could be an effective strategy to improve TIL infiltration and function.  相似文献   

11.
Previous studies have suggested that reticulum cell sarcoma (RCS) tumor cells of SJL/J (IA + IE-) mice express neospecificities that are related to antigenic specificities characteristic of IE+ allogeneic cells. These neospecificities have also been suggested to play a role in the strong syngeneic antitumor proliferative response as well as in regulating RCS growth in vivo. The present studies characterize four RCS tumor-specific T cell hybridoma clones prepared from the fusion of BW5147 thymoma with T cells derived from lymph nodes of tumor-bearing mice. Upon stimulation, these hybridomas secrete IL 2 in the supernatant. Two hybridomas responded to RCS to IE+k and to IE+d allogeneic cells, respectively, and the other two hybridomas were tumor specific. The specificity of these hybridomas was assessed by response to both spontaneous and transplantable RCS lines and failure to stimulate a response by either normal or LPS-induced B cell blasts from the host SJL/J cells. The epitopes recognized by the T cell hybridomas were examined by the ability of several monoclonal antibodies to inhibit the IL 2-induced response by the T cell hybridomas. Antibodies directed against the IABs polypeptide of the IA hybrid molecule blocked the antitumor response by all four hybridomas. However, the response to allogeneic IE+ cells was not blocked by anti-IAs antibody but was blocked by antibodies directed against either the IAk,d or IEk,d hybrid molecules or the corresponding alpha- or beta-chains. The response to both RCS and allogeneic cells was blocked by monoclonal antibodies directed against L3T4 antigens on the T cells. Based on the exquisite specificity of the T cell receptors, the results here demonstrate that RCS tumor cells express on their surface both tumor-specific I-A-associated epitopes and Ia-associated antigenic specificities that are shared with IE+ allogeneic cells. The present studies of adapting T cell hybridomas and blocking antibodies proved useful to characterize and map distinct tumor-associated epitopes on the surface of tumor cells. These findings, when combined with structural studies, should help unravel the molecular complexity of tumor-associated antigens.  相似文献   

12.
Although the anterior chamber of the eye expresses immune privilege, some ocular tumors succumb to immune rejection. Previous studies demonstrated that adenovirus-induced tumors, adenovirus type 5 early region 1 (Ad5E1), underwent immune rejection following transplantation into the anterior chamber of syngeneic mice. Intraocular tumor rejection required CD4(+) T cells, but did not require the following: 1) CD8(+) T cells, 2) B cells, 3) TNF, 4) perforin, 5) Fas ligand, or 6) NK cells. This study demonstrates that CD4(+) T cell-dependent tumor rejection does not occur in IFN-gamma-deficient mice. Ad5E1 tumor cells expressed DR5 receptor for TRAIL and were susceptible to TRAIL-induced apoptosis. Although IFN-gamma did not directly induce apoptosis of the tumor cells, it rendered them 3-fold more susceptible to TRAIL-induced apoptosis. Both CD4(+) T cells and corneal endothelial cells expressed TRAIL and induced apoptosis of Ad5E1 tumor cells. The results suggest that Ad5E1 tumor rejection occurs via TRAIL-induced apoptosis as follows: 1) tumor cells express TRAIL-R2 and are susceptible to TRAIL-induced apoptosis, 2) IFN-gamma enhances TRAIL expression on CD4(+) T cells and ocular cells, 3) IFN-gamma enhances tumor cell susceptibility to TRAIL-induced apoptosis, 4) apoptotic tumor cells are found in the eyes of rejector mice, but not in the eyes of IFN-gamma knockout mice that fail to reject intraocular tumors, 5) CD4(+) T cells and corneal endothelial cells express TRAIL and induce apoptosis of tumor cells, and 6) apoptosis induced by either CD4(+) T cells or corneal cells can be blocked with anti-TRAIL Ab.  相似文献   

13.
Peripheral tolerance to shared Ags expressed on both tumors and normal self-tissues presents a major barrier to T cell-based immunotherapy as a treatment for cancer. To assess the activity of tumor-specific T cells against spontaneously arising carcinomas in the context of shared Ag expression, we developed a model system whereby an identified tumor Ag, tumor ERK (tERK), is expressed transgenically on both normal mammary tissue and spontaneous mammary carcinomas. Transfer of in vitro-activated, tERK-specific DUC18 T cells delayed spontaneous tumor development in tERK-expressing mice when T cells were given before the development of palpable carcinomas. However, antitumor activity mediated by in vitro-activated DUC18 T cells, as measured by responsiveness against a transplanted tERK-expressing fibrosarcoma challenge, was lost within days of transfer. This loss was due to expression of tERK as a self-Ag on normal tissues and was independent of the presence of mammary tumors. In contrast, transferred naive DUC18 T cells maintained a long-term protective function in tERK-expressing mice. Ten-fold fewer naive T cells activated in vivo were able to replicate the delay in spontaneous tumor development achieved by in vitro-activated T cells. These results are in contrast to our earlier studies using transplanted tumors alone, in which in vitro-activated DUC18 T cells were more efficacious than naive DUC18 T cells and highlight the need to perform tumor studies in the presence of tumor Ag expression on normal self-tissue.  相似文献   

14.
Spontaneously arising reticulum cell sarcoma (RCS) tumors in SJL/J mice stimulate syngeneic host T lymphocytes to proliferate and are dependent on host T cells for maintenance and growth. Tumor-associated Ia antigens have been implicated in the proliferative response both in vivo and in vitro, and the responding T cells are predominantly Lyt-1+2- L3T4+. We hypothesized that elimination or depletion of the responding L3T4 subpopulation in vivo should inhibit growth of transplantable RCS tumors, and continued RCS growth may be dependent on the continued presence of L3T4 cells. This hypothesis was tested experimentally by examining the effect of passive administration of L3T4 monoclonal antibody (mAb) into SJL/J mice either before or at different times after tumor inoculation. The tumor inoculum used killed all mice 15 to 30 days after injection. Administration of a single dose of L3T4 mAb 4 days before tumor inoculation resulted in complete depletion of L3T4 cells and complete inhibition of tumor growth. The antibody-treated mice survived with no sign of tumor growth even after complete recovery of L3T4+ cells. These results demonstrate that initiation of tumor growth is dependent on host L3T4+ cells. Administration of mAb as late as 7 days after tumor inoculation resulted in inhibition of tumor growth, and administration of mAb at day 10 resulted in significant inhibition of tumor growth. Compared with the kinetics of tumor growth in normal control mice, administration of L3T4 after tumor inoculation results in tumor growth arrest. These findings demonstrate that continued tumor growth in vivo is dependent on the presence of L3T4+ cells. In the RCS system, the present studies show that administration of mAb to L3T4+ cells is therapeutic in that it inhibits the induction of tumor growth, and it also prevents tumor growth in tumor-bearing animals.  相似文献   

15.
CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.Subject terms: Pattern recognition receptors, Immunosurveillance  相似文献   

16.
Development of effective vaccination approaches to treat established tumors represents a focus of intensive research because such approaches offer the promise of enhancing immune system priming against tumor Ags via restimulation of pre-existing (memory) antitumoral helper and effector immune cells. However, inhibitory mechanisms, which function to limit the recall responses of tumor-specific immunity, remain poorly understood and interfere with therapies anticipated to induce protective immunity. The mouse renal cell carcinoma (RENCA) tumor model was used to investigate variables affecting vaccination outcomes. We demonstrate that although a whole cell irradiated tumor cell vaccine can trigger a functional antitumor memory response in the bone marrows of mice with established tumors, these responses do not culminate in the regression of established tumors. In addition, a CD103+ regulatory T (Treg) cell subset accumulates within the draining lymph nodes of tumor-bearing mice. We also show that B7-H1 (CD274, PD-L1), a negative costimulatory ligand, and CD4+ Treg cells collaborate to impair the recall responses of tumor-specific memory T cells. Specifically, mice bearing large established RENCA tumors were treated with tumor cell vaccination in combination with B7-H1 blockade and CD4+ T cell depletion (triple therapy treatment) and monitored for tumor growth and survival. Triple treatment therapy induced complete regression of large established RENCA tumors and raised long-lasting protective immunity. These results have implications for developing clinical antitumoral vaccination regimens in the setting in which tumors express elevated levels of B7-H1 in the presence of abundant Treg cells.  相似文献   

17.
Immune suppression in tumor-bearing hosts is considered to be one factor causally associated with the growth of antigenic tumors. Support for this hypothesis has come from reports that spleen T cells in tumor-bearing mice are deficient in either priming or effector phase functions. We have reexamined this hypothesis in detail using multiple murine tumor models, including transplantable adenocarcinoma, melanoma, sarcoma, and thymoma, and also a transgenic model of spontaneous breast carcinoma. In both in vitro and in vivo assays of T cell function (proliferation, cytokine production, induction of CD8+ alloreactive CTL, and development of anti-keyhole limpet hemocyanin CD4+ T cells, rejection of allogeneic or syngeneic regressor tumors, respectively) we show that mice bearing sizable tumor burdens are not systemically suppressed and do not have diminished T cell functions. Therefore, if immune suppression is a causal function in the growth of antigenic tumor, the basis for escape from immune destruction is likely to be dependent upon tumor-induced T cell dysfunction at the site of tumor growth.  相似文献   

18.
Presence of alloantigens on various murine tumors was tested by tumor rejection in allosensitized Swiss mice. The results indicated the presence of alloantigen on immunogenic tumors like chemically induced fibrosarcoma (FS), ascitic sarcoma 180 (S 180) and immunogenic variant of lymphosarcoma (LS-A) in Swiss mice, while these antigens could not be detected by this procedure on spontaneous lymphosarcoma (LS). Allosensitization with skin graft was found to offer quantitatively higher antitumor resistance than the allosensitization achieved by allogeneic lymphocytes. Antitumor effect was not seen when tumor cells were inoculated earlier than day 3 of grafting. Further, host immunosuppression with whole body irradiation up to day of 3 of skin grafting abrogated the antitumor effect. H-2 compatible and non-H-2 incompatible skin graft sensitization of host could offer resistance against both S 180 and LS-A. Further, tumor immune mice rejected H-2 compatible, non-H-2 incompatible skin graft significantly earlier.  相似文献   

19.
Mechanism of tumor rejection in anti-CD3 monoclonal antibody-treated mice   总被引:4,自引:0,他引:4  
The present study was undertaken to determine the mechanism of tumor rejection in mice treated with low dose anti-CD3 mAb. It was found that treated mice developed nonrestricted antitumor cytolytic spleen cells of the Thy-1+, asialo GM-1+, CD4-, CD8- phenotype. Although these cells might play a role in immunopotentiating some immune responses, in vivo depletion studies using anti-asialo GM-1 mAb demonstrated that these cells were not involved in the rejection of the progressor tumor, 1591-PRO4L, by anti-CD3 mAb-treated mice. Mice treated with anti-CD3 did develop lasting tumor specific immunity as demonstrated by their ability to reject PRO4L on tumor rechallenge while being unable to reject an unrelated UV-induced tumor. The specificity of this memory implicated T cells in the response to PRO4L in anti-CD3-treated mice. Using in vivo T cell subset depletion of anti-CD3-treated animals, it was shown that both CD4+ and CD8+ T cells are required for anti-CD3-induced tumor rejection. The CD4+ cells provide helper function and are only required in the early rejection period, whereas CD8+ cells are required throughout the immune response. In fact, examination of rejecting tumors from treated animals revealed the presence of tumor-specific CD8+ cytolytic T cells capable of cytolysis immediately after removal from the rejecting PRO4L tumor. Thus, in vivo treatment with anti-CD3 mAb likely results in the pan-stimulation of the entire T cell population, which enhances the generation of specific CD8+ T cells, which then eliminate the tumor.  相似文献   

20.
Rejection of mouse sarcoma cells after transfection of MHC class II genes   总被引:7,自引:0,他引:7  
Th cells are stimulated by peptide Ag presented in the context of MHC class II molecules. We have reasoned that immune responses against tumors may be more efficient if tumor cells were class II Ag positive, and thereby able to directly function as APC to stimulate tumor-specific Th cell proliferation. We have tested this hypothesis by using DNA-mediated gene transfer to generate syngeneic MHC class II Ag-expressing mouse Sal sarcoma cells (Sal/Ak transfectants). Autologous A/J mice challenged i.p. or s.c. with Sal/Ak transfectants do not develop tumors, whereas A/J mice challenged with the class II negative parental Sal tumor have a high tumor incidence. Furthermore, immunization of the autologous host with Sal/Ak transfectants completely protects against subsequent challenge with wild-type Sal cells. MHC class II-expressing tumor cells, therefore, stimulate an improved tumor-specific immune response, and the immunity is cross-reactive with the class II negative tumor. Inasmuch as the transfected MHC class II gene product is not functioning as a target molecule for autologous tumor rejection, the improved immunogenicity of the Sal/Ak cells is probably due to stimulation of a tumor-specific Th cell population. The increased immunogenicity of Sal/Ak cells is, therefore, probably the result of direct presentation of Sal tumor-associated Ag in the context of tumor cell MHC class II molecules to Th lymphocytes. These studies demonstrate that induction of tumor cell MHC class II Ag expression is a potential strategy for tumor-specific immunotherapy, and suggest that tumor immunity may be enhanced by improved Th cell generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号