首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cardiomyocyte migration represents a requisite event of cardiogenesis and the regenerative response of the injured adult zebrafish and neonatal rodent heart. The present study tested the hypothesis that the appearance of the intermediate filament protein nestin in neonatal rat ventricular cardiomyocytes (NNVMs) was associated in part with the acquisition of a migratory phenotype. The cotreatment of NNVMs with phorbol 12,13‐dibutyrate (PDBu) and the p38α/β mitogen‐activated protein kinase inhibitor SB203580 led to the de novo synthesis of nestin. The intermediate filament protein was subsequently reorganized into a filamentous pattern and redistributed to the leading edge of elongated membrane protrusions translating to significant lengthening of NNVMs. PDBu/SB203580 treatment concomitantly promoted the reorganization of nonmuscle myosin IIB (NMIIB) located predominantly at the periphery of the plasma membrane of NNVMs to a filamentous phenotype extending to the leading edge of elongated membrane protrusions. Coimmunoprecipitation assay revealed a physical interaction between NMIIB and nestin after PDBu/SB203580 treatment of NNVMs. In wild‐type and heterozygous NMIIB embryonic hearts at E11.5–E14.5 days, nestin immunoreactivity was identified in a subpopulation of cardiomyocytes elongating perpendicular to the compact myocardium, at the leading edge of nascent trabeculae and during thickening of the compact myocardium. In mutant embryonic hearts lacking NMIIB protein expression, trabeculae formation was reduced, the compact myocardium significantly thinner and nestin immunoreactivity undetectable in cardiomyocytes at E14.5 days. These data suggest that NMIIB and nestin may act in a coordinated fashion to facilitate the acquisition of a migratory phenotype in neonatal and embryonic cardiomyocytes.  相似文献   

3.
During tissue healing, the primary role of myofibroblasts involves the synthesis and deposition of collagen. However, it has also been reported that selective populations of myofibroblasts can acquire the phenotype and/or differentiate to other cells types. The present study tested the hypothesis that myofibroblasts isolated from the scar of the ischemically damaged rat heart can recapitulate an endothelial cell-like response when plated in a permissive in vitro environment. Scar myofibroblasts, neonatal and adult ventricular fibroblasts express smooth muscle α-actin, collagen α(1) type 1 and a panel of pro-fibrotic and pro-angiogenic peptide growth factor mRNAs. Myofibroblasts plated alone on matrigel led to the self assembly of lumen-like structures whereas neonatal and adult rat ventricular fibroblasts were unresponsive. Myofibroblasts labeled with the fluorescent cell tracker CM-DiI were injected in the viable myocardium of 3-day post-myocardial infarcted Sprague-Dawley rats and sacrificed 7 days later. Injected CM-DiI-labeled myofibroblasts were detected predominantly in the peri-infarct/infarct region, highlighting their migration to the damaged region. However, engrafted myofibroblasts in the peri-infarct/infarct region were unable to adopt an endothelial cell-like phenotype or lead to the de novo formation of CM-DiI-labeled blood vessels. The non-permissive nature of the infarct region may be attributed at least in part to the presence of growth-promoting stimuli as TGF-β and the β-adrenergic agonist isoproterenol inhibited the self assembly of lumen-like structures by myofibroblasts. Thus, when plated in a permissive in vitro environment, scar myofibroblasts can self assemble and form lumen-like structures providing an additional novel phenotype distinguishing this population from normal ventricular fibroblasts.  相似文献   

4.
5.
The class VI intermediate filament protein nestin has been generally considered as a specific marker for neural precursor cells or developing muscles. In the prenatal developing rat central nervous system (CNS), we localized immunoreactivity for the nestin in blood vessels. Although the widespread nestin expression in cerebral blood vessels persisted in early postnatal periods, it was down-regulated in the adulthood. However, when the adult rat brains were subjected to procedures that trigger neovascularization, e.g. grafting fetal nervous tissue or C6 glioma, the abundant immunoreactivity was detected in all newly formed vessels and adjacent host vasculature. Our results demonstrate that nestin expression in endothelial cells lining cerebral vessels accompanies the process of angiogenesis.  相似文献   

6.
Nestin structure and predicted function in cellular cytoskeletal organisation   总被引:10,自引:0,他引:10  
Nestin is an intermediate filament protein expressed in dividing cells during the early stages of development in the CNS, PNS and in myogenic and other tissues. Upon differentiation, nestin becomes downregulated and is replaced by tissue-specific intermediate filament proteins. Interestingly, nestin expression is reinduced in the adult during pathological situations, such as the formation of the glial scar after CNS injury and during regeneration of injured muscle tissue. Although it is utilised as a marker of proliferating and migrating cells very little is known about its functions or regulation. In depth studies on the distribution and expression of nestin in mitotically active cells indicate a complex role in regulation of the assembly and disassembly of intermediate filaments which together with other structural proteins, participate in remodeling of the cell. The role of nestin in dynamic cells, particularly structural organisation of the cell, appears strictly regulated by phosphorylation, especially its integration into heterogeneous intermediate filaments together with vimentin or alpha-internexin.  相似文献   

7.
Neural stem cells were identified in the rat heart and during scar formation and healing participated in sympathetic fiber sprouting and angiogenesis. In the setting of diabetes, impaired wound healing represents a typical pathological feature. These findings provided the impetus to test the hypothesis that experimental diabetes adversely influenced the phenotype of cardiac neural stem cells. Streptozotocin (STZ)‐induced diabetic rats were associated with elevated plasma glucose levels, significant loss of body weight and left ventricular contractile dysfunction. In the heart of STZ‐diabetic rats, the density of nestin immunoreactive processes emanating from cardiac neural stem cells were reduced. The latter finding was reaffirmed as nestin protein expression was significantly decreased in the heart of STZ‐diabetic rats and associated with a concomitant reduction of nestin mRNA. Employing the TUNEL assay, the loss of nestin expression in STZ‐diabetic rats was not attributed to widespread cardiac neural stem cell apoptosis. Insulin administration to STZ‐diabetic rats with established hyperglycaemia led to a modest recovery of nestin protein expression in cardiac neural stem cells. By contrast, the administration of insulin immediately after STZ injection improved plasma glucose levels and significantly attenuated the loss of nestin protein expression. These data highlight the novel observation that nestin protein expression in cardiac neural stem cells was significantly reduced in STZ‐induced type I diabetic rats. The aberrant cardiac neural stem cell phenotype may compromise their biological role and predispose the diabetic heart to maladaptive healing following ischemic injury. J. Cell. Physiol. 220: 440–449, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Nerve fiber innervation of the scar following myocardial damage may have occurred either via the growth of pre-existing fibers and/or the mobilization of neural stem cells. The present study examined whether neural stem cells were recruited to the infarct region of the rat heart following coronary artery ligation. The neural stem cell marker nestin was detected in the infarct region of 1-week post-myocardial infarct (MI) male rats and cultured scar-derived neural-like cells. By contrast, nestin staining was undetected in either scar myofibroblasts or cardiac myocytes residing in the non-infarcted left ventricle. Reactive astrocytes were isolated from the infarct region and characterized by the co-expression of nestin, glial fibrillary acidic protein, and vimentin. Specific staining of oligodendrocytes and neurons was also detected in the infarct region and cultured scar-derived neural-like cells. Furthermore, neurofilament-M positive fibers were identified in the scar and tyrosine hydroxylase immunoreactivity was observed in peripherin-positive neurons. Neurite formation was induced in PC12 cells treated with the conditioned-media of primary passage scar-derived cells, highlighting the synthesis and secretion of neurotrophic factors. Nerve growth factor (NGF) and brain-derived neurotrophic factor were detected in myofibroblasts and neural cells, and both cell types expressed the NGF receptors trkA and p75. These data highlight the novel observation that neural stem cells were recruited to the infarct region of the damaged rat heart and may contribute in part to nerve fiber growth and subsequent innervation of the scar.  相似文献   

9.
Nestin is an intermediate filament protein originally described in neural stem cells and a variety of progenitor cells. More recently, nestin was detected in rat kidney podocytes. We show here that nestin is expressed in a developmentally regulated pattern in the kidney. Nestin was detected by immunohistochemistry in the condensing mesenchyme surrounding the ureter, in developing glomeruli, in podocytes of the adult kidney, and in a podocyte cell line. Nestin shared a striking overlap in expression with the Wilms' tumor suppressor Wt1. Nestin was significantly upregulated in a cell line with inducible Wt1 expression upon induction of Wt1. Cotransfection experiments in human embryonic kidney cells (HEK293) revealed stimulation of a nestin intron 2 enhancer element up to six-fold by the Wt1(-KTS) splice variant. Nestin expression was significantly reduced in an inducible mouse model of glomerular disease. This model is based on podocyte-specific overexpression of Pax2 and associated with a loss of Wt1 expression. Furthermore, also in the developing heart, nestin was found in an overlapping pattern with Wt1 in the epicardium and the forming coronary vessels. Strikingly, in the hearts of Wt1 knockout mice, nestin was barely detectable compared with the hearts of wild-type embryos. Our results show that nestin is expressed at different stages of kidney and cardiac development and suggest that its expression in these organs might be regulated by the Wilms' tumor suppressor Wt1.  相似文献   

10.
11.
Fibroblast growth in the scar and surviving tissue is a key element of the remodeling post myocardial infarction. The regulation of fibroblast growth after acute myocardial infarction remains to be determined. Recently, Angiotensin II has been demonstrated to be a mitogen for neonatal cardiac fibroblasts. In this study adult rat cardiac fibroblasts were isolated from different regions of the infarcted rat heart and Angiotensin II effects examined. Adult Wistar-rats were sham operated or left coronary artery ligated. After 4 days, hearts were removed and fibroblasts from sham operated, infarct- and non-infarct regions of the left ventricle isolated. Radioligand binding studies were performed and cell number, cell area, total protein, and AT(1) receptor mRNA after stimulation determined. Radioligand binding studies demonstrated that myofibroblasts expressed a single class of high affinity Angiotensin II AT(1) receptors. Myofibroblasts from the infarct area revealed a lower maximal binding capacity, compared to sham operated myocardium. Conversely, myofibroblasts from the non-infarct area had a higher expression of Angiotensin II AT(1) receptor mRNA compared to sham operated myofibroblasts. Angiotensin II (1 microM, 48 h) increased cell-number in sham operated and non-infarct, but not in infarct myofibroblasts. Angiotensin II elevated total protein in sham operated, non-infarct, and infarct myofibroblasts. In addition, Angiotensin II increased cell area in sham operated and infarct myofibroblasts. These data demonstrate that Angiotensin II acted as a mitogen in sham operated and non-infarct myofibroblasts and stimulated hypertrophy in infarct myofibroblasts. These regional different effects of Angiotensin II might participate in the remodeling post myocardial infarction.  相似文献   

12.
Recent studies have revealed the existence of multipotent nestin-immunoreactive cells in the adult mammalian heart. These cells were recruited to infarct site following ischemic injury and differentiated to a vascular lineage leading to de novo blood vessel formation. Here, we show that a sub-population of cardiac resident nestin((+)) cells can further differentiate to a neuronal-like fate in vivo following myocardial infarction. In the ischemically damaged rat heart, neurofilament-M((+)) fibres were detected innervating the peri-infarct/infarct region and the preponderance of these fibres were physically associated with processes emanating from nestin((+)) cells. One week after isogenic heterotopic cardiac transplantation, the beating transplanted rat heart was devoid of neurofilament-M((+)) fibre staining. The superimposition of an ischemic insult to the transplanted heart led to the de novo synthesis of neurofilament-M((+)) fibres by cardiac resident nestin((+)) cells. Nerve growth factor infusion and the exposure of normal rats to intermittent hypoxia significantly increased the density of neurofilament-M((+)) fibres in the heart. However, these newly formed neurofilament-M((+)) fibres were not physically associated with nestin((+)) processes. These data highlight a novel paradigm of reparative fibrosis as a subpopulation of cardiac resident nestin((+)) cells directly contributed to neural remodelling of the peri-infarct/infarct region of the ischemically damaged rat heart via the de novo synthesis of neurofilament-M fibres.  相似文献   

13.
Nestin expression in rat adrenal gland   总被引:2,自引:1,他引:1  
The constituents of the intermediate filament network of adrenal gland cells have not been deeply investigated in vivo. Adrenocortical cells have been reported to express cytokeratins and vimentin, but the intermediate filament components of the adrenomedullary cells are still unknown. Nestin is an intermediate filament protein that is mainly expressed in the developing nervous and muscle systems. It has been reported to be unable to form filaments by itself and it co-assembles with vimentin. Using immunocytochemical and biochemical approaches, the present study demonstrates that nestin is expressed in situ either in the cortex or in the medulla of adult rat adrenal glands. Nestin-negative cells prevalently form the zona glomerulosa whereas the zona fasciculata and the zona reticularis are mainly nestin-immunoreactive. Nestin-positive cells always express vimentin-like immunoreactivity but several cells apparently expressing only vimentin are detectable too. Nestin is also expressed by adrenomedullary cells that also display a faint vimentin-like immunoreactivity. We hypothesise that the inconstant detection of nestin in adrenocortical cells depends on their different functional moments. Moreover, even though our data do not allow to confirm vimentin in adrenomedullary cells, in situ detection of nestin in the adrenal medulla indirectly supports in vivo expression of vimentin in chromaffin cells.  相似文献   

14.
We examined the relationship between clusterin and activated complement in human heart infarction and evaluated the effect of this protein on ischemic rat neonatal cardiomyoblasts (H9c2) and isolated adult ventricular rat cardiomyocytes as in vitro models of acute myocardial infarction. Clusterin protects cells by inhibiting complement and colocalizes with complement on jeopardized human cardiomyocytes after infarction. The distribution of clusterin and complement factor C3d was evaluated in the infarcted human heart. We also analyzed the protein expression of clusterin in ischemic H9c2 cells. The binding of endogenous and purified human clusterin on H9c2 cells was analyzed by flow cytometry. Furthermore, the effect of clusterin on the viability of ischemically challenged H9c2 cells and isolated adult ventricular rat cardiomyocytes was analyzed. In human myocardial infarcts, clusterin was found on scattered, morphologically viable cardiomyocytes within the infarcted area that were negative for complement. In H9c2 cells, clusterin was rapidly expressed after ischemia. Its expression was reduced after reperfusion. Clusterin bound to single annexin V-positive or annexin V and propidium iodide-positive H9c2 cells. Clusterin inhibited ischemia-induced death in H9c2 cells as well as in isolated adult ventricular rat cardiomyocytes in the absence of complement. We conclude that ischemia induces the upregulation of clusterin in ischemically challenged, but viable, cardiomyocytes. Our data suggest that clusterin protects cardiomyocytes against ischemic cell death via a complement-independent pathway.  相似文献   

15.
Mechanisms of cardiac regeneration following transmural myocardial infarction were analysed in rat hearts using immunohistochemistry for a-SMA, caspase-3, Ki-67 and nestin markers. Seven weeks after experimental myocardial infarction, two different types of healing processes were revealed in rats with and without aneurysmatic bulging of the left ventricular wall. Besides thinning of the ventricular wall, three zones characterized both types of scars: the scar zone (divided into central and peripheral parts), the peri-infarct zone and the border zone. The main difference between the types of scars was the presence of a central necrotic zone inside the aneurysmatic wall, while connective tissue with myofibroblasts characterized the same zone in non-bulging wall. Apoptotic caspase-3 positive cells were found in the granulation tissue of the border zone in aneurysmatic scar, while in non-bulging scar they characterized all three zones. Proliferating Ki-67 positive cells displayed reverse expression pattern compared to apoptotic cells. Quantification of a-SMA positive cells revealed 60% a-SMA positive cells inside the central part of the aneurysmatic scar zone and 39% in invaginating areas, versus 19% in non-invaginating areas of the peripheral zone, but only 30% in the peripheral part of the non-bulging scar zone. Nestin positive cells were found in both types of scars, but with different distribution. These results suggest that even seven weeks after myocardial infarction, the healing processes in non-bulging scars are in chronic phase, while aneurysmatic scars are still in subacute phase. Histological differences in scar healing might be important for functional properties of the heart wall and for heart recovery prognosis.  相似文献   

16.
Neuronal regeneration does generally not occur in the central nervous system (CNS) after injury, which has been attributed to the generation of glial scar tissue. In this report we show that the composition of the glial scar after traumatic CNS injury in rat and mouse is more complex than previously assumed: expression of the intermediate filament nestin is induced in reactive astrocytes. Nestin induction occurs within 48 hours in the spinal cord both at the site of lesion and in degenerating tracts and lasts for at least 13 months. Nestin expression is induced with similar kinetics in the crushed optic nerve. In addition to the expression in reactive astrocytes, we also observed nestin induction within 48 hours after injury in cells close to the central canal in the spinal cord, while nestin expressing cells at later timepoints were found progressively further out from the central canal. This dynamic pattern of nestin induction after injury was mimicked by lacZ expressing cells in nestin promoter/lacZ transgenic mice, suggesting that defined nestin regulatory regions mediate the injury response. We discuss the possibility that the spatiotemporal pattern of nestin expression reflects a population of nestin positive cells, which proliferates and migrates from a region close to the central canal to the site of lesion in response to injury.  相似文献   

17.
In this study, the first nestin isoform, Nes-S, was identified in neurons of dorsal root ganglia (DRG) of adult rats. Nes-S cannot form filaments by itself in cytoplasmic intermediate filament-free SW13 cells. Instead, it co-assembles into filaments with vimentin when transfected into vimentin+ SW13 cells, and with peripherin and neurofilament proteins when transfected into N2a cells. In primary DRG neurons, endogenous Nes-S co-assembles with peripherin and neurofilament proteins. The expression of Nes-S first appears in DRG at postnatal day 5 and persists to adulthood. Among the adult tissues we examined, the expression of Nes-S is restricted to the sensory and motor neurons. Finally, exogenous Nes-S enhances viability when transfected into N2a cells, and knockdown of endogenous Nes-S impairs the survival of DRG neurons in primary cultures. Taken together, Nes-S is a new neuronal intermediate filament protein that exerts a cytoprotective function in mature sensory and motor neurons.  相似文献   

18.
Coiled-coil domain containing 85c (Ccdc85c) is a causative gene for genetic hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. In the present study, we examined the expression pattern of CCDC85C protein and intermediate filament proteins, such as nestin, vimentin, GFAP, and cytokeratin AE1/AE3, during lateral ventricle development in rats. CCDC85C was expressed in the neuroepithelial cells of the dorsal lateral ventricle wall, diminishing with development and almost disappearing at postnatal day 20. By immunoelectron microscopy, CCDC85C was localized in the cell-cell junction and apical membrane. The expression of nestin and vimentin was decreased in the wall of the lateral ventricle in manner similar to CCDC85C, but GFAP expression started immediately after birth and became stronger with age. Moreover, cytokeratin expression was found at postnatal day 13 and increased at postnatal day 20 in conjunction with the disappearance of CCDC85C expression. Taken together, CCDC85C is expressed in the cell-cell junctions lining the wall of the lateral ventricle and plays a role in neural development with other intermediate filaments in the embryonic and postnatal periods. Our chronological study will help to relate CCDC85C protein with intermediate filaments to elucidate the detailed role of CCDC85C protein during neurogenesis.  相似文献   

19.
Nestin is an intermediate filament protein that is known as a neural stem/progenitor cell marker. It is expressed in undifferentiated central nervous system (CNS) cells during development, but also in normal adult CNS and in CNS tumor cells. Additionally, nestin is expressed in endothelial cells (ECs) of CNS tumor tissues and of adult tissues that replenish by angiogenesis. However, the regulation of nestin expression in vascular endothelium has not been analyzed in detail. This study showed that nestin expression was observed in proliferating endothelial progenitor cells (EPCs), but not in mature ECs. In adherent cultured cells derived from bone marrow cells, EPCs that highly expressed nestin also expressed the endothelial marker CD31 and the proliferation marker Ki67. ECs cultured without growth factors showed attenuated nestin immunoreactivity as they matured. Transgenic mice that carried the enhanced green fluorescent protein under the control of the CNS-specific second intronic enhancer of the nestin gene showed no reporter gene expression in EPCs. This indicated that the mechanisms of nestin gene expression were different in EPCs and CNS cells. Immunohistochemistry showed nestin expression in neovascular cells from two distinct murine models. Our results demonstrate that nestin can be used as a marker protein for neovascularization. (J Histochem Cytochem 58:721–730, 2010)  相似文献   

20.
Nitric oxide (NO)-releasing drugs such as glyceryl trinitrate have been used in the treatment of ischemic heart disease for more than a century. Nevertheless, a detailed analysis of the expression of the NO target enzyme soluble guanylyl cyclase (sGC) in the heart is missing. The aim of the current study was to elucidate the expression, cell distribution, and activity of sGC in the rat heart during postnatal development. Using a novel antibody raised against a C-terminal peptide of the rat beta(1)-subunit of sGC, the enzyme was demonstrated in early postnatal and adult hearts by Western blotting analyses, showing maximal expression in 10-day-old animals. Measurements of basal, NO-, and NO/YC-1-stimulated sGC activity revealed an increase of sGC activity in hearts from neonatal to 10-day-old rats, followed by a subsequent decrease in adult animals. As shown by immunohistochemical analysis, sGC expression was present in vascular endothelium and smooth muscle cells in neonatal heart but expression shifted to endothelial cells in adult animals. In isolated cardiomyocytes, sGC activity was not detectable under basal conditions but significant sGC activity could be detected in the presence of NO. An increase in expression during the perinatal period and changes in the cell types expressing sGC at different phases of development suggest dynamic regulation rather than constitutive expression of the NO receptor in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号