共查询到20条相似文献,搜索用时 0 毫秒
1.
Guenther MA Bruder ED Raff H 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(5):R627-R633
One of the biggest challenges of premature birth is acute hypoxia. Hypothermia during acute hypoxic periods may be beneficial. We hypothesized that prevention of hypothermia during neonatal hypoxia disrupts glucose homeostasis and places additional metabolic challenges on the neonate. Pups at PD2 and PD8 were exposed to 8% O2 for 3 h, during which they were allowed to either spontaneously cool or were kept isothermic. There was also a time control group that was subjected to normoxia and kept isothermic. Plasma glucose, insulin, C-peptide, corticosterone, and catecholamines were measured from samples collected at baseline, 1 h, 2 h, and 3 h. In postnatal day 2 (PD2) rats, hypoxia alone resulted in no change in plasma glucose by 1 h, an increase by 2 h, and a subsequent decrease below baseline values by 3 h. Hypoxia with isothermia in PD2 rats elicited a large increase in plasma insulin at 1 h. In PD8 rats, hypoxia with isothermia resulted in an initial increase in plasma glucose, but by 3 h, glucose had decreased significantly to below baseline levels. Hypoxia with and without isothermia elicited an increase in plasma corticosterone at both ages and an increase in plasma epinephrine in PD8 rats. We conclude that the insulin response to hypoxia in PD8 rats is associated with an increase in glucose similar to an adult; however, insulin responses to hypoxia in PD2 rats were driven by something other than glucose. Prevention of hypothermia during hypoxia further disrupts glucose homeostasis and increases metabolic challenges. 相似文献
2.
Raff H Jacobson L Cullinan WE 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,285(5):R1224-R1230
Hypoxia is a common cause of neonatal morbidity and mortality. We have previously demonstrated a dramatic ACTH-independent activation of adrenal steroidogenesis in hypoxic neonatal rats, leading to increases in circulating corticosterone levels. The purpose of the present study was to determine if this ACTH-independent increase in corticosterone inhibits the ACTH response to acute stimuli. Neonatal rats were exposed to normoxia (control) or hypoxia from birth to 5 or 7 days of age. At the end of the exposure, plasma ACTH and corticosterone were measured before and after either ether vapors were administered for 3 min or CRH (10 microg/kg) was given intraperitoneally. Thyroid function, pituitary pro-opiomelanocortin (POMC) mRNA and ACTH content, and hypothalamic corticotropin-releasing hormone (CRH), neuropeptide Y (NPY), and AVP mRNA were also assessed. Hypoxia led to a significant increase in corticosterone without a large increase in ACTH, confirming previous studies. The ACTH responses to ether or CRH administration were almost completely inhibited in hypoxic pups. Hypoxia did not affect the established regulators of the neonatal hypothalamic-pituitary-adrenal axis, including pituitary POMC or ACTH content, hypothalamic CRH, NPY, or AVP mRNA (parvo- or magnocellular), or thyroid function. We conclude that hypoxia from birth to 5 or 7 days of age leads to an attenuated ACTH response to acute stimuli, most likely due to glucocorticoid negative feedback. The neural and biochemical mechanism of this effect has yet to be elucidated. 相似文献
3.
Anita Pawar Ying-Jie Peng Frank J Jacono Nanduri R Prabhakar 《Journal of applied physiology》2008,104(5):1287-1294
Previous studies suggest that carotid body responses to long-term changes in environmental oxygen differ between neonates and adults. In the present study we tested the hypothesis that the effects of chronic intermittent hypoxia (CIH) on the carotid body differ between neonates and adult rats. Experiments were performed on neonatal (1-10 days) and adult (6-8 wk) males exposed either to CIH (9 episodes/h; 8 h/day) or to normoxia. Sensory activity was recorded from ex vivo carotid bodies. CIH augmented the hypoxic sensory response (HSR) in both groups. The magnitude of CIH-evoked hypoxic sensitization was significantly greater in neonates than in adults. Seventy-two episodes of CIH were sufficient to evoke hypoxic sensitization in neonates, whereas as many as 720 CIH episodes were required in adults, suggesting that neonatal carotid bodies are more sensitive to CIH than adult carotid bodies. CIH-induced hypoxic sensitization was reversed in adult rats after reexposure to 10 days of normoxia, whereas the effects of neonatal CIH persisted into adult life (2 mo). Acute intermittent hypoxia (IH) evoked sensory long-term facilitation of the carotid body activity (sensory LTF, i.e., increased baseline neural activity following acute IH) in CIH-exposed adults but not in neonates. The effects of CIH were associated with hyperplasia of glomus cells in neonatal but not in adult carotid bodies. These observations demonstrate that responses to CIH differ between neonates and adults with regard to the magnitude of sensitization of HSR, susceptibility to CIH, induction of sensory LTF, reversibility of the responses, and morphological remodeling of the chemoreceptor tissue. 相似文献
4.
Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups.
Ying-Jie Peng Julie Rennison Nanduri R Prabhakar 《Journal of applied physiology》2004,97(5):2020-2025
Carotid bodies are functionally immature at birth and exhibit poor sensitivity to hypoxia. Previous studies have shown that continuous hypoxia at birth impairs hypoxic sensing at the carotid body. Intermittent hypoxia (IH) is more frequently experienced in neonatal life. Previous studies on adult animals have shown that IH facilitates hypoxic sensing at the carotid bodies. On the basis of these studies, in the present study we tested the hypothesis that neonatal IH facilitates hypoxic sensing of the carotid body and augments ventilatory response to hypoxia. Experiments were performed on 2-day-old rat pups that were exposed to 16 h of IH soon after the birth. The IH paradigm consisted of 15 s of 5% O2 (nadir) followed by 5 min of 21% O2 (9 episodes/h). In one group of experiments (IH and control, n = 6 pups each), sensory activity was recorded from ex vivo carotid bodies, and in the other (IH and control, n = 7 pups each) ventilation was monitored in unanesthetized pups by plethysmography. In control pups, sensory response of the carotid body was weak and was slow in onset (approximately 100 s). In contrast, carotid body sensory response to hypoxia was greater and the time course of the response was faster (approximately 30 s) in IH compared with control pups. The magnitude of the hypoxic ventilatory response was greater in IH compared with control pups, whereas changes in O2 consumption and CO2 production during hypoxia were comparable between both groups. The magnitude of ventilatory stimulation by hyperoxic hypercapnia (7% CO2-balance O2), however, was the same between both groups of pups. These results demonstrate that neonatal IH facilitates carotid body sensory response to hypoxia and augments hypoxic ventilatory chemoreflex. 相似文献
5.
Effect of neonatal hypoxia on leptin, insulin, growth hormone and body composition in the rat. 总被引:4,自引:0,他引:4
The purpose of the present study was to evaluate the effect of exposure to hypoxia from birth to 7 days of age on leptin, insulin, growth hormone (GH), insulin-like growth factor-1 (IGF-1), glucose, corticosterone, body weight, and body composition in rats studied at 7 days of age and then after return to normoxia. Hypoxia for the first 7 days of life resulted in a significant decrease in plasma leptin, body weight, and an increase in corticosterone and insulin with no change in plasma glucose, GH or IGF-1. There was no significant effect of hypoxia on % lean body mass, but a small but significant increase in % body fat. Bone mineral density (BMD) was lower in 7-day-old hypoxic rats as compared to normoxic controls. All hormonal variables and BMD had normalized by 7 days after return to normoxia. However, body weight remained lower even 5 weeks after return to normoxia. We conclude that leptin is decreased during neonatal hypoxia despite no change in adiposity. Furthermore, insulin is increased probably to overcome the effects of increased counterregulatory hormones (such as corticosterone). 相似文献
6.
Raff H Hong JJ Oaks MK Widmaier EP 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,284(1):R78-R85
The adrenocortical response to hypoxia may be a critical component of the adaptation to this common neonatal stress. Little is known about adrenal function in vivo in hypoxic neonates. The purpose of this study was to evaluate adrenocortical responses to ACTH in suckling rat pups exposed to hypoxia from birth to 5-7 days of age compared with normoxic controls. We also evaluated potential cellular controllers of steroidogenic function in situ. In 7-day-old pups at 0800, hypoxia from birth resulted in increased basal (12.2 +/- 1.4 ng/ml; n = 12) and ACTH-stimulated (94.0 +/- 9.4 ng/ml; n = 14) corticosterone levels compared with normoxic controls (basal = 8.3 +/- 0.5 ng/ml; n = 11; stimulated = 51.3 +/- 3.8 ng/ml; n = 8). This augmentation occurred despite no significant difference in plasma ACTH levels in normoxic vs. hypoxic pups before (85 +/- 4 vs. 78 +/- 8 pg/ml) or after (481 +/- 73 vs. 498 +/- 52 pg/ml) porcine ACTH injection (20 microg/kg). This effect was similar in the afternoon at 6 days of age and even greater at 5 days of age at 0800. The aldosterone response to ACTH was not augmented by exposure to hypoxia from birth. Adrenocortical hypoxia-inducible factor (HIF)-1alpha mRNA was undetectable by RT-PCR. Steroidogenic acute regulatory (StAR) protein in adrenal subcapsules (zona fasciculata/reticularis) was augmented by exposure to hypoxia; this effect was greatest at 5 days of age. Peripheral-type benzodiazepine receptor (PBR) protein was also increased at 6 and 7 days of age in pups exposed to hypoxia from birth. We conclude that hypoxia from birth results in an augmentation of the corticosterone but not aldosterone response to ACTH. This effect appears to be mediated at least in part by an increase in controllers of mitochondrial cholesterol transport (StAR and PBR) and to occur independently of measurable changes in endogenous plasma ACTH. The augmentation of the corticosterone response to acute increases in ACTH in hypoxic pups is likely to be an important component of the overall physiological adaptation to hypoxia in the neonate. 相似文献
7.
8.
9.
Characteristics of body temperature, vasopressin, and oxytocin responses to endotoxin in the rat 总被引:1,自引:0,他引:1
N W Kasting 《Canadian journal of physiology and pharmacology》1986,64(12):1575-1578
Several physiological variables were measured after endotoxin administration in the rat to examine the relationship between these variables. Rats responded to endotoxin with a biphasic body temperature response, an initial decrease and a subsequent increase in body temperature. Plasma vasopressin and oxytocin levels increased markedly after endotoxin administration. Diarrhea occurred in some animals. There was a strong negative correlation between increase in body temperature and base-line body temperature, and weak correlations between body weight and plasma vasopressin release and between base-line body temperature and minimum body temperature reached. Plasma vasopressin and oxytocin levels were correlated if samples from all time points were analyzed together, whereas they were not correlated if data from each time point were analyzed separately or if total peptide release for each rat was evaluated. These data suggest similar regulation for the release of vasopressin and oxytocin, that is, release by a common stimulus, but the magnitude of release of vasopressin and oxytocin appears to be independent, probably reflecting differences in synthesis and storage of these two peptides. 相似文献
10.
11.
12.
Selenium deficiency causes oxidative stress and impairs steroidogenesis in vitro. Leptin is closely related to the hypothalamo-pituitary-adrenal (HPA) axis. Leptin inhibits the HPA axis at the central level while corticosteroids have been shown to stimulate leptin secretion in most studies. We hypothesized that oxidative stress impairs adrenal steroidogenesis and decreases leptin production in vivo. The goal of this study was to investigate in rats the effects of selenium deficiency and oxidative stress on adrenal function and on leptin concentrations. Weanling rats were fed a selenium-deficient (Se-) or selenium-sufficient (Se+) diet for 4-10 weeks. Selenium deficiency caused a marked decrease in liver (> or = 99%) and adrenal (> or = 81%) glutathione peroxidase (GPx) activities. Selenium deficiency did not affect basal and short-term adrenocorticotropin (ACTH) stimulated corticosterone or leptin concentrations. In contrast, after long-term ACTH stimulation, selenium deficiency caused a doubling in adrenal isoprostane content and blunted the increase in corticosterone and leptin concentrations observed in Se+ animals. Plasma leptin concentrations were 50% lower in Se- compared to Se+ animals following long-term ACTH. Our results suggest that oxidative stress causes a decrease in circulating corticosterone in response to ACTH, and, as a consequence, a decrease in plasma leptin concentrations. 相似文献
13.
14.
15.
Skórzewska A Bidziński A Lehner M Turzyńska D Sobolewska A Hamed A Szyndler J Maciejak P Plaznik A 《Hormones and behavior》2007,52(3):317-325
The effects of acute pretreatment of rats with corticosterone (5 and 20 mg/kg, s.c.) on emotional behavior, expression of c-Fos protein in brain structures, and serum concentration of corticosterone were studied to model the short-term glucocorticoid-dependent changes in brain functions. Corticosterone was administered 90 min before training of a conditioned fear reaction (a freezing response), and behavioral, hormonal and immunocytochemical effects were examined 1 day later, on the test day. Pretreatment of rats with corticosterone significantly attenuated the freezing reaction in the conditioned fear test. The effect of the corticosterone was accompanied by a selective enhancement of the aversive context-induced c-Fos expression in some brain structures: the parvocellular and magnocellular neurons of the paraventricular hypothalamic nucleus (pPVN and mPVN), the medial amygdala nucleus (MeA), and the cingulate cortex, area 1 (Cg1), as well as an increase in the concentration of aversive context-induced endogenous serum glucocorticoid, 1.5 h and 10 min after the test session, respectively. It is suggested that the behavioral effects of acute pretreatment of rats with corticosterone could be due to changes in the mnemonic processes in the brain, inhibition of brain corticotropin releasing factor (CRF) synthesis, or stimulation of GABA-A receptor modulating neurosteroids synthesis. It is hypothesized that the enhanced activity of Cg1, MeA, pPVN, and mPVN, and the hypothalamic-pituitary-adrenal axis with concomitant increased serum glucocorticoid concentration, might serve to facilitate active coping behavior in a threatening situation. 相似文献
16.
R C McEvoy 《The American journal of anatomy》1980,157(3):319-327
Fetal (18 days postcoitum) and neonatal (3-day) pancreatic explants were grown in organ culture with or without supplementation with corticosterone (0.1 micrograms/ml). After 0, 4, and 8 days of culture, the specific hormone-positive, islet cell volumes were determined by the use of immunocytochemical and morphometric methods. The insulin, glucagon, and somatostatin contents of the explants were estimated by radioimmunoassays. In the fetal explants, all of the islet cell populations increased in volume and the content of each of the hormones increased over an 8-day period of culture. Supplementation with corticosterone resulted in a restriction of the increases of the alpha and delta cell volumes and in the somatostatin content of the explants. In the neonatal explants, the volumes of the alpha and delta cells and the glucagon and somatostatin contents decreased over a 4-day culture period. The presence of corticosterone in the culture medium preserved these cells and their hormone content. Co-culture of 18-day fetal and 3-day neonatal pancreata in control medium for 8 days resulted in a significant decrease in the content of all three of the islet hormones in the fetal explants. These results suggest that a substance harmful to the islet cells is released from the degenerating acinar cells. Thus, the effects of the steroid on the islets may be mediated through its effects on the acinar tissue. 相似文献
17.
We have studied the effect of acute and chronic stress on corticosterone and growth hormone (GH) serum levels in male Wistar rats. Both acute noise-light stress and the presence of a dog elicited an increase in corticosterone and a decrease in GH levels in serum. While previous chronic stress induced a reduction of corticosterone response to the same stimuli, no reduction was observed in GH response. In addition, chronic exposure to noise-light stress induced modifications in corticosterone but not in GH response to dog presence. The results suggest that GH and corticoadrenal response mechanisms of adaptation to chronic stress are dissociated. This is further corroborated by the study of the correlation between both hormones. 相似文献
18.
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions. 相似文献
19.
Estivation is accompanied by a reduction of oxygen consumption in amphibians during drought. We tested the hypothesis that, during the dry season, the toad Bufo paracnemis selects a lower preferred body temperature (T(b)), and would be less sensitive to hypoxia, than during its active period. Therefore, during winter (dry season in S?o Paulo state, Brazil) and summer, we measured the effects of hypoxia (7% inspired O(2)) on preferred T(b). Additionally, pulmonary ventilation, heart rate, blood pressure, and oxygen consumption were also measured in toads at 15 and 25 degrees C. Blood gases were measured at 25 degrees C. Oxygen consumption was significantly higher during summer in toads at 25 degrees C. Under normoxia, preferred T(b) was higher during summer than during winter, and hypoxia caused a drop in preferred T(b) during both seasons. In both seasons, toads at 15 degrees C showed reduced pulmonary ventilation, heart rate, and blood pressure, and hypoxia had no effect. At 25 degrees C during summer only, hypoxia caused an increase in ventilation. Season had no effect on blood gases. We conclude that B. paracnemis displays an endogenous seasonal pattern of thermoregulation and control of ventilation. The decreased preferred T(b) and the physiological responses to hypoxia may be beneficial to toads encountering drought and when food is not available. 相似文献
20.
In neonatal mammals of many species, including human infants, apnea and other reflex responses frequently arise from stimulation of laryngeal receptors by ingested or regurgitated liquids. These reflexes, mediated by afferents in the superior laryngeal nerves (SLNs), are collectively known as the laryngeal chemoreflex (LCR) and are suspected to be responsible for some cases of the sudden infant death syndrome (SIDS). The LCR is strongly enhanced by mild increases in body temperature in decerebrate piglets, a finding that is of interest because SIDS victims are often found in overheated environments. Because of the experimental advantages of studying reflex development and mechanisms in neonatal rodents, we have developed methods for eliciting laryngeal apnea in anesthetized rat pups and have examined the influence of mild hyperthermia in animals ranging in age from 3 to 21 days. We found that apnea and respiratory disruption, elicited either by intralaryngeal water or by electrical stimulation of the SLN, occurred at all ages studied. Raising body temperature by 2-3 degrees C prolonged the respiratory disturbance in response to either stimulus. This effect of hyperthermia was prominent in the youngest animals and diminished with age. We conclude that many studies of the LCR restricted to larger neonatal animals in the past can be performed in infant rodents using appropriate methods. Moreover, the developmental changes in the LCR and in the thermal modulation of the LCR seem to follow different temporal profiles, implying that distinct neurophysiological processes may mediate the LCR and thermal prolongation of the LCR. 相似文献