首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR‐301b‐3p functions as a driver in various types of human cancer. However, the expression pattern of miR‐301b‐3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR‐301b‐3p expression was significantly up‐regulated in HCC tissues compared to adjacent non‐tumour tissues. Clinical association analysis revealed that the high level of miR‐301b‐3p closely correlated with large tumour size and advanced tumour‐node‐metastasis stages. Importantly, the high miR‐301b‐3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR‐301b‐3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR‐301b‐3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR‐301b‐3p directly bond to 3′UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down‐regulated and inversely correlated with miR‐301b‐3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR‐301b‐3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR‐301b‐3p is highly expressed in HCC. miR‐301b‐3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.  相似文献   

2.
Zhao JJ  Pan K  Li JJ  Chen YB  Chen JG  Lv L  Wang DD  Pan QZ  Chen MS  Xia JC 《PloS one》2011,6(10):e26608

Background

LZAP was isolated as a binding protein of the Cdk5 activator p35. LZAP has been highly conserved during evolution and has been shown to function as a tumor suppressor in various cancers. This study aimed to investigate LZAP expression and its prognostic value in hepatocellular carcinoma (HCC). Meanwhile, the function of LZAP in hepatocarcinogenesis was further investigated in cell culture models and mouse models.

Methods

Real-time quantitative PCR, western blot and immunohistochemistry were used to explore LZAP expression in HCC cell lines and primary HCC clinical specimens. The functions of LZAP in the proliferation, colony formation, cell cycle, migration, invasion and apoptosis of HCC cell lines were also analyzed by infecting cells with an adenovirus containing full-length LZAP. The effect of LZAP on tumorigenicity in nude mice was also investigated.

Results

LZAP expression was significantly decreased in the tumor tissues and HCC cell lines. Clinicopathological analysis showed that LZAP expression was significantly correlated with tumor size, histopathological classification and serum α-fetoprotein (AFP). The Kaplan–Meier survival curves revealed that decreasing LZAP expression was associated with poor prognosis in HCC patients. LZAP expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. The re-introduction of LZAP expression in the HepG2 and sk-Hep1 HCC cell lines significantly inhibited proliferation and colony formation in the HCC cells and induced G1 phase arrest and apoptosis of the HCC cells in vitro. Restoring LZAP expression in the HCC cell lines also inhibited migration and invasion. In addition, experiments with a mouse model revealed that LZAP overexpression could suppress HCC tumorigenicity in vivo.

Conclusions

Our data suggest that LZAP may play an important role in HCC progression and could be a potential molecular therapy target for HCC.  相似文献   

3.
The multi-kinase inhibitor Sorafenib increases the survival of patients with advanced hepatocellular carcinoma (HCC). Current data suggest that Sorafenib inhibits cellular proliferation and angiogenesis and promotes apoptosis. However, the underlying pro-apoptotic molecular mechanisms are incompletely understood. Here we compared the pro-apoptotic and anti-proliferative properties of Sorafenib in murine hepatoma cells and syngeneic healthy hepatocytes in vitro and in animal models of HCC and liver regeneration in vivo. In vitro, we demonstrate that cell cycle activity and expression of anti-apoptotic Bcl-2 like proteins are similarly downregulated by Sorafenib in Hepa1-6 hepatoma cells and in syngeneic primary hepatocytes. However, Sorafenib-mediated activation of caspase-3 and induction of apoptosis were exclusively found in hepatoma cells, but not in matching primary hepatocytes. We validated these findings in vivo by applying an isograft HCC transplantation model and partial hepatectomy (PH) in C57BL/6 mice. Sorafenib treatment activated caspase-3 and thus apoptosis selectively in small tumor foci that originated from implanted Hepa1-6 cells but not in surrounding healthy hepatocytes. Similarly, Sorafenib did not induce apoptosis after PH. However, Sorafenib treatment transiently inhibited cell cycle progression and resulted in mitotic catastrophe and enhanced non-apoptotic liver injury during regeneration. Importantly, Sorafenib-mediated apoptosis in hepatoma cells was associated with the expression of p53-upregulated-modulator-of-apoptosis (PUMA). In contrast, regenerating livers after PH revealed downregulation of PUMA and were completely protected from Sorafenib-mediated apoptosis. We conclude that Sorafenib induces apoptosis selectively in hepatoma cells but not in healthy hepatocytes and can additionally increase non-apoptotic hepatocyte injury in the regenerating liver.  相似文献   

4.
Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.  相似文献   

5.
MicroRNAs (miRNAs) have been implicated in the orchestration of diverse cellular processes including differentiation, proliferation, and apoptosis and are believed to play pivotal roles as oncogenes and tumor suppressors. miR-122, a liver specific miRNA, is significantly down-regulated in most hepatocellular carcinomas (HCCs) but its role in tumorigenesis remains poorly understood. Here we identify AKT3 as a novel and direct target of miR-122. Restoration of miR-122 expression in HCC cell lines decreases AKT3 levels, inhibits cell migration and proliferation, and induces apoptosis. These anti-tumor phenotypes can be rescued by reconstitution of AKT3 expression indicating the essential role of AKT3 in miR-122 mediated HCC transformation. In vivo, restoration of miR-122 completely inhibited xenograft growth of HCC tumor in mice. Our data strongly suggest that miR-122 is a tumor suppressor that targets AKT3 to regulate tumorigenesis in HCCs and a potential therapeutic candidate for liver cancer.  相似文献   

6.
7.
BackgroundSevoflurane (SEVO) inactivates the aggressiveness of hepatocellular carcinoma (HCC) cells by mediating microRNAs (miRNAs). Hence, we delved into the functional role of miR-148a-3p mediated by SEVO in HCC.MethodsLiver cells (L02) and HCC cells (HCCLM3 and Huh7) were exposed to SEVO to detect cell viability in HCC. HCCLM3 and Huh7 cells were treated with restored miR-148a-3p or depleted Rho-associated protein kinase 1 (ROCK1) to elucidate their roles in HCC cells' biological characteristics. HCCLM3 and Huh7 cells were treated with SEVO, and/or vectors that changed miR-148a-3p or ROCK1 expression to identify their combined functions in HCC cell progression. Tumor xenograft in nude mice was performed to determine growth ability of tumor. The target relationship between miR-148a-3p and ROCK1 was verified.ResultsSEVO inhibited proliferation, invasion and migration and enhanced apoptosis of HCCLM3 and Huh7 cells. MiR-148a-3p up-regulation or ROCK1 down-regulation inhibited HCCLM3 and Huh7 cell progression. ROCK1 was determined to be target gene of miR-148a-3p. Down-regulating miR-148a-3p or overexpressing ROCK1 mitigated cell aggressiveness inhibition caused by SEVO.ConclusionOur study elucidates that microRNA-148a-3p enhances the effects of sevoflurane on inhibiting proliferation, invasion and migration and enhancing apoptosis of HCC cells through suppression of ROCK1.  相似文献   

8.
Liu Y  Hei Y  Shu Q  Dong J  Gao Y  Fu H  Zheng X  Yang G 《PloS one》2012,7(4):e35800
Valosin containing protein (VCP)/p97 plays various important roles in cells. Moreover, elevated expression of VCP in hepatocellular carcinoma (HCC) is correlated with increased incidence of recurrence. But the role of VCP in HCC progression in vitro and in vivo is unclear. And there are few reports about the regulation mechanism on the expression of VCP in HCC. In this study, it was identified that the level of VCP was frequently increased in human HCC tissues. In addition, down-regulation of VCP with siRNAs could dramatically suppress the genesis and progression of tumor in vivo. It was found that miR-129-5p directly inhibited the expression of VCP in several HCC cell lines. Meanwhile, the level of VCP in HCC tissues was negatively associated with the level of miR-129-5p. Our further investigation showed that the enhanced expression of miR-129-5p also suppressed tumor growth in vivo. Moreover, it was revealed that miR-129-5p could inhibit the degradation of IκBα and increase the apoptosis and reduce the migration of HCC cells by suppressing the expression of VCP. Our results revealed that the expression of VCP was directly regulated by miR-129-5p and this regulation played an important role in the progression of HCC.  相似文献   

9.
DLC-1基因是一种肿瘤抑制基因,位于人类染色体8p21.3-22。它是RhoA特异性GTP酶的激动蛋白,与调控细胞增殖和粘附的信号传导通路关系密切,在人类多种肿瘤中呈低表达或表达缺失。研究发现DLC-1基因在原发性肝癌(HCC)及肝癌细胞系中表达缺失,提示该基因在原发性肝癌中抑制了肝癌细胞的增殖。DLC-1表达的恢复引起了caspase-3介导的细胞凋亡,抑制肝癌细胞的生长和癌细胞的浸润,从而在肝细胞癌的转移、侵袭及肿瘤细胞的生物特性方面发挥作用。因其与肝癌发生,转移乃至复发关系密切,使其在肝癌早期发现,早期预测肝癌的转移复发及肝癌的预后方面发挥重要角色。  相似文献   

10.
Anion exchanger (AE) 2, belonging to the chloride–bicarbonate transporter family, has been reported to involve cell survival for hepatocellular carcinoma (HCC) cells. Our previous findings showed that AE2 gene was highly expressed in a poorly differentiated HCC cell line, HA22T/VGH. Additionally, treatment with 4,4′-diisothiocyanatostilbene-2,20-disulfonic acid (DIDS), an AE-specific inhibitor, significantly inhibited cell proliferation and induced cell apoptosis for the HA22T/VGH. To further investigate the biological functions of AE2 in human HCC, suppression of AE2 expression by the antisense oligonucleotide-AE2 (AS-AE2) was performed, and the cell viability, cell cycle regulation, and cell apoptosis for HCC cell lines were monitored. The results showed that AS-AE2 treatment could efficiently suppress the mRNA expression of AE2 for various differentiated HCC cells, including HA22T/VGH, SK-Hep-1, PLC/PRF/5, Hep3B, and HepG2. Moreover, AS-AE2 treatment significantly reduced cell viability, arrested cell cycle at sub-G1 phase, and induced cell apoptosis for the poorly differentiated HA22T/VGH, but not for other moderately or well-differentiated HCC cell lines. The findings indicated that AE2 may play an important role in the progression of HCC cells, and provide a new strategy for the development of therapeutic treatment against human HCC.  相似文献   

11.
Dysregulation of microRNAs frequently contributes to the occurrence and progression of human diseases, including hepatocellular carcinoma (HCC). In this study, the role of miR-450b-3p in HCC was investigated. Gene Expression Omnibus database and HCC specimens were used to evaluate the expression level of miR-450b-3p and the patient's prognosis. Cell functional analyses and tumor xenograft model were used to assess the role of miR-450b-3p in HCC. Bioinformatics was used to predict the downstream target gene of miR-450b-3p, which was verified by dual-luciferase reporter assay. MiR-450b-3p was found to be downregulated in HCC cell lines and tissues, compared with nontransformed immortal hepatic cells and adjacent normal liver tissues, respectively. Lower expression of miR-450b-3p was associated with poor overall survival and disease-free survival in patients with HCC. Ectopic expression of miR-450b-3p inhibited HCC cell viability, colony formation, and cell-cycle progression in vitro, and suppressed the growth of HCC xenograft tumors in vivo. Interestingly, a negative correlation between miR-450b-3p and phosphoglycerate kinase 1 (PGK1) protein was observed among HCC specimens. Additionally, miR-450b-3p inhibited PGK1 expression and phosphorylation of protein kinase B in HCC cell lines. Further experiments confirmed that PGK1 was a direct target of miR-450b-3p. Moreover, restoration of PGK1 abrogated the inhibitory effect of miR-450b-3p on HCC proliferation and cell division. In conclusion, miR-450b-3p is downregulated in human HCC and exerts tumor suppressive effects at least in part by inhibiting PGK1.  相似文献   

12.
Several studies have indicated that microgravity can influence cellular progression, proliferation, and apoptosis in tumor cell lines. In this study, we observed that simulated microgravity inhibited proliferation and induced apoptosis in U251 malignant glioma (U251MG) cells. Furthermore, expression of the apoptosis-associated proteins, p21 and insulin-like growth factor binding protein-2 (IGFBP-2), was upregulated and downregulated, respectively, following exposure to simulated microgravity. These findings indicate that simulated microgravity inhibits proliferation while inducing apoptosis of U251MG cells. The associated effects appear to be mediated by inhibition of IGFBP-2 expression and stimulation of p21 expression. This suggests that simulated microgravity might represent a promising method to discover new targets for glioma therapeutic strategy.  相似文献   

13.
RNA activation (RNAa) is a mechanism of gene activation triggered by promoter-targeted small double-stranded RNA (dsRNA), also known as small activating RNA (saRNA). p21(WAF1/CIP1) (p21) is a putative tumor suppressor gene due to its role as a key negative regulator of the cell cycle and cell proliferation. It is frequently downregulated in cancer including hepatocellular carcinoma (HCC), but is rarely mutated or deleted, making it an ideal target for RNAa-based overexpression to restore its tumor suppressor function. In the present study, we investigated the antigrowth effects of p21 RNAa in HCC cells. Transfection of a p21 saRNA (dsP21-322) into HepG2 and Hep3B cells significantly induced the expression of p21 at both the mRNA and protein levels, and inhibited cell proliferation and survival. Further analysis of dsP21-322 transfected cells revealed that dsP21-322 arrested the cell cycle at the G(0)/G(1) phase in HepG2 cells but at G(2)/M phase in Hep3B cells which lack functional p53 and Rb genes, and induced both early and late stage apoptosis by activating caspase 3 in both cell lines. These results demonstrated that RNAa of p21 has in vitro antigrowth effects on HCC cells via impeding cell cycle progression and inducing apoptotic cell death. This study suggests that targeted activation of p21 by RNAa may be explored as a novel therapy for the treatment of HCC.  相似文献   

14.
Multi-drug resistance is a major challenge to hepatocellular carcinoma (HCC) treatment, and the over-expression or deletion of microRNA (miRNA) expression is closely related to the drug-resistant properties of various cell lines. However, the underlying molecular mechanisms remain unclear. CCK-8, EdU, flow cytometry, and transmission electron microscopy were performed to determine cell viability, proliferation, apoptosis, autophagic flow, and nanoparticle characterization, respectively. In this study, the results showed that the expression of miR-26b was downregulated following doxorubicin treatment in human HCC tissues. An miR-26b mimic enhanced HCC cell doxorubicin sensitivity, except in the absence of p53 in Hep3B cells. Delivery of the proteasome inhibitor, MG132, reversed the inhibitory effect of miR-26b on the level of p53 following doxorubicin treatment. Tenovin-1 (an MDM2 inhibitor) protected p53 from ubiquitination-mediated degradation only in HepG2 cells with wild type p53. Tenovin-1 pretreatment enhanced HCC cell resistance to doxorubicin when transfected with an miR-26b mimic. Moreover, the miR-26b mimic inhibited doxorubicin-induced autophagy and the autophagy inducer, rapamycin, eliminated the differences in the drug sensitivity effect of miR-26b. In vivo, treatment with sp94dr/miR-26b mimic nanoparticles plus doxorubicin inhibited tumor growth. Our current data indicate that miR-26b enhances HCC cell sensitivity to doxorubicin through diminishing USP9X-mediated p53 de-ubiquitination caused by DNA damaging drugs and autophagy regulation. This miRNA-mediated pathway that modulates HCC will help develop novel therapeutic strategies.  相似文献   

15.
Hepatocellular carcinoma (HCC) is a major public health concern because of the absence of early diagnosis and effective treatments. Efficient diagnosis modalities and therapies to treat HCC are needed. Kruppel-like factor (KLF) family members, such as KLF6, are involved in cell proliferation and differentiation. KLF6 is inactivated in solid tumors, which may contribute to pathogenesis. However, KLF6 status in HCC is controversial. Thus, we undertook the characterization of KLF6 expression and function in HCC and HCC-derived cell lines. We found that HCC, HepG2 and HuH7 cells expressed KLF6 messenger ribonucleic acid and protein. Next, using RNA interference, we demonstrated that inhibiting KLF6 expression in vitro strongly impaired cell proliferation-induced G1-phase arrest, inhibited cyclin-dependent kinase 4 and cyclin D1 expression, and subsequent retinoblastoma phosphorylation. Finally, KLF6 silencing caused p53 upregulation and inhibited Bcl-xL expression, to induce cell death by apoptosis. Taken together, these data demonstrated that KLF6 is essential for HCC-derived cells to evade apoptosis.  相似文献   

16.
Hepatocellular carcinoma (HCC) is the most common visceral neoplasms with its heterogeneity and high rate of recurrence. HCC is characterized to be delayed diagnosis and the development of resistant disease. However, the molecular mechanism for HCC pathogenesis and progression remains largely unknown. Here, we demonstrated that ubiquitin-specific protease14 (USP14) is highly expressed in HCC samples, and the higher expression of USP14 is positively correlated with poor prognosis. Interestingly, USP14 is involved in the maintenance of HIF1-α stability to activate HIF1-α-induced transactivation via its deubiquitinase activity. USP14 depletion or its specific inhibitor IU1 treatment decreased cell proliferation, invasion, migration, and Vascular Mimicry (VM) formation even under hypoxia conditions in HCC cell lines. Moreover, we provided the evidence to show that knockdown of USP14 or USP14 inhibitor (IU1) treatment inhibited tumor growth in tumor-bearing nude mice. Our findings suggest that USP14 maintains HIF1-α stability through its deubiquitination activity, providing a potential biomarker for the early diagnosis and therapy of HCC.Subject terms: Cancer, Cell biology  相似文献   

17.
Increasing evidence suggests that the renin-angiotensin system (RAS) plays an important role in tumorigenesis. The interaction between Angiotensin II (AngII) and angiotensin type 1 receptor (AT1R) may have a pivotal role in hepatocellular carcinoma (HCC) and therefore, AT1R blocker and angiotensin I-converting enzyme (ACE) inhibitors may have therapeutic potential in the treatment of hepatic cancer. Although the involvement of AT1R has been well explored, the role of the angiotensin II Type 2 receptor (AT2R) in HCC progression remains poorly understood. Thus, the aim of this study was to explore the effects of AT2R overexpression on HCC cells in vitro and in mouse models of human HCC. An AT2R recombinant adenoviral vector (Ad-G-AT2R-EGFP) was transduced into HCC cell lines and orthotopic tumor grafts. The results indicate that the high dose of Ad-G-AT2R-EGFP–induced overexpression of AT2R in transduced HCC cell lines produced apoptosis. AT2R overexpression in SMMC7721 cells inhibited cell proliferation with a significant reduction of S-phase cells and an enrichment of G1-phase cells through changing expression of CDK4 and cyclinD1. The data also indicate that overexpression of AT2R led to apoptosis via cell death signaling pathway that is dependent on activation of p38 MAPK, pJNK, caspase-8 and caspase-3 and inactivation of pp42/44 MAPK (Erk1/2). Finally, we demonstrated that moderately increasing AT2R expression could increase the growth of HCC tumors and the proliferation of HCC cells in vivo. Our findings suggest that AT2R overexpression regulates proliferation of hepatocellular carcinoma cells in vitro and in vivo, and the precise mechanisms of this phenomenon are yet to be fully determined.  相似文献   

18.
19.
Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1) is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy.  相似文献   

20.
N-trans-feruloyloctopamine (FO) isolated from Garlic skin was identified as the primary antioxidant constituents, however, the effect of which on HCC invasion is still unclear. Herein, the FO was synthesized and its antitumor activities were evaluated in HCC cell lines. Cellular functional analyses have revealed that the reformed FO owns strong abilities of inhibiting cell proliferation and invasion in HCC cells. Molecular data have further showed that FO could significantly decrease the phosphorylation levels of Akt and p38 MAPK. In addition, the expression of Slug was inhibited and the level of E-cadherin increased. Molecular docking analysis indicates that the H-bond and hydrophobic interactions were critical for FO and E-cadherin binding, but FO did not seem to act directly on phosphorylated Akt and p38 MAPK. We have thus concluded that reformed FO inhibits cell invasion might be directly through EMT related signals (E-cadherin) and indirectly through PI3K/Akt, p38 MAPK signaling pathways. FO might be a promising drug in HCC treatment and prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号