首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscopy (AFM) is a technique widely used to image protein-DNA complexes, and its application has now been extended to the measurements of protein-DNA binding constants and specificities. However, the spreading of the protein-DNA complexes on a flat substrate, generally mica, is required prior to AFM imaging. The influence of the surface on protein-DNA interactions is therefore an issue which needs to be addressed. For that purpose, the extensively studied EcoRI-DNA complex was investigated with the aim of providing quantitative information about the surface influence. The equilibrium binding constant of the complex was determined by AFM at both low and high ionic strengths and compared to electrophoretic mobility shift assay measurements (EMSA). In addition, the effect of the DNA length on dissociation of the protein from its specific site was analyzed. It turned out that the AFM measurements are similar to those obtained by EMSA at high ionic strengths. We then advance the idea that this effect is due to the high counterion concentration near the highly negatively charged mica surface. In addition, a dissociation of the complexes once they are adsorbed onto the surface was observed, which is weakly dependent on the ionic strength contrary to what occurs in solution. Finally, a two-step mechanism, which describes the adsorption of the EcoRI-DNA complexes on the surface, is proposed. This model could also be extended to other protein-DNA complexes.  相似文献   

2.
Miniaturized protein arrays address protein interactions with various types of molecules in a high-throughput and multiplexed fashion. This review focuses on achievements in the analysis of protein-DNA and protein-protein interactions. The technological feasibility of protein arrays depends on the different factors that enable the arrayed proteins to recognize molecular partners and on the specificity of the interactions involved. Proteome-scale studies of molecular interactions require high-throughput approaches for both the production and purification of functionally active proteins. Various solutions have been proposed to avoid non-specific protein interactions on array supports and to monitor low-abundance molecules. The data accumulated indicate that this emerging technology is perfectly suited to resolve networks of protein interactions involved in complex physiological and pathological phenomena in different organisms and to develop sensitive tools for biomedical applications.  相似文献   

3.
Photolyase DNA interactions and the annealing of restriction fragment ends are directly visualized with the atomic force microscope (AFM). To be able to interact with proteins, DNA must be loosely bound to the surface. When MgCl2 is used to immobilize DNA to mica, DNA is attached to the surface at distinct sites. The pieces of DNA in between are free to move over the surface and are available for protein interaction. After implementation of a number of instrumental improvements, the molecules can be visualized routinely, under physiological conditions and with molecular resolution. Images are acquired reproducibly without visible damage for at least 30 min, at a scan rate of 2 x 2 microm2/min and a root mean square noise of less than 0.2 nm. Nonspecific photolyase DNA complexes were visualized, showing association, dissociation, and movement of photolyase over the DNA. The latter result suggests a sliding mechanism by which photolyase can scan DNA for damaged sites. The experiments illustrate the potential that AFM presents for modern molecular biology.  相似文献   

4.
Atomic force microscopy imaging and force spectroscopy have recently opened a range of novel applications in microbiology. During the past two years, rapid advances have been made using atomic force microscopy to visualize the surface structure of two-dimensional bacterial protein crystals, biofilms and individual cells in physiological conditions. There has also been remarkable progress in using force spectroscopy to measure biomolecular interactions and physical properties of microbial surfaces. Specific highlights include the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes.  相似文献   

5.
A short personal perspective on the development of an approach to the solution-phase synthesis of combinatorial libraries for modulating cellular signaling by inhibiting, promoting, or mimicking protein-protein or protein-DNA interactions is provided.  相似文献   

6.
7.
Label-free protein and pathogen detection using the atomic force microscope   总被引:4,自引:0,他引:4  
The atomic force microscope (AFM) uses a sharp micron-scale tip to scan and amplify surface features, providing exceptionally detailed topographical information with magnification on the order of x10(6). This instrument is used extensively for quality control in the computer and semiconductor industries and is becoming a progressively more important tool in the biological sciences. Advantages of the AFM for biological application include the ability to obtain information in a direct, label-free manner and the ability to image in solution, providing real-time data acquisition under physiologically relevant conditions. A novel application of the AFM currently under development combines its surface profiling capabilities with fixed immuno-capture using antibodies immobilized in a nanoarray format. This provides a distinctive platform for direct, label-free detection and characterization of viral particles and other pathogens.  相似文献   

8.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

9.

Background

Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed.

Results

To extract those representative solutions from the docking output datafile, we have developed an unsupervised and automatic clustering application, named DockAnalyse. This application is based on the already existing DBscan clustering method, which searches for continuities among the clusters generated by the docking output data representation. The DBscan clustering method is very robust and, moreover, solves some of the inconsistency problems of the classical clustering methods like, for example, the treatment of outliers and the dependence of the previously defined number of clusters.

Conclusions

DockAnalyse makes the interpretation of the docking solutions through graphical and visual representations easier by guiding the user to find the representative solutions. We have applied our new approach to analyze several protein interactions and model the dynamic protein interaction behavior of a protein complex. DockAnalyse might also be used to describe interaction regions between proteins and, therefore, guide future flexible dockings. The application (implemented in the R package) is accessible.
  相似文献   

10.
Atomic force microscopy (AFM) has been applied in many biological investigations in the past 15 years. This review focuses on the application of AFM for quantitatively characterizing the structural and thermodynamic properties of protein-protein and protein-nucleic acid complexes. AFM can be used to determine the stoichiometries and association constants of multiprotein assemblies and to quantify changes in conformations of proteins and protein-nucleic acid complexes. In addition, AFM in solution permits the observation of the dynamic properties of biomolecular complexes and the measurement of intermolecular forces between biomolecules. Recent advances in cryogenic AFM, AFM on two-dimensional crystals, carbon nanotube probes, solution imaging, high-speed AFM, and manipulation capabilities enhance these applications by improving AFM resolution and the dynamic and operative capabilities of the AFM. These developments make AFM a powerful tool for investigating the biomolecular assemblies and interactions that govern gene regulation.  相似文献   

11.
12.
It was initially believed that G-protein-coupled receptors, such as metabotropic glutamate receptors, could simply be described as individual proteins that are associated with intracellular signal cascades via G-proteins. This view is no longer tenable. Today we know that metabotropic glutamate receptors (mGluRs) can dimerize and bind to a variety of proteins in addition to trimeric G-proteins. These newly identified protein interactions led to the discovery of new regulatory mechanisms that are independent of and sometimes synergistic with the classical G-protein-coupled second messenger pathways. Notably, several of these mechanisms connect mGluR-mediated signaling to other receptor classes, thereby creating a network of different receptor types and associated signal cascades. The intracellular C-termini of mGluRs play a key role in the regulation of these networks, and various new protein interactions of these domains were described recently. Because mGluRs are involved in a variety of physiological and pathophysiological processes, some of the proteins interacting with this receptor class have potential as valuable pharmaceutical targets. This review will give a comprehensive overview of proteins interacting with mGluR C-termini, highlight new evolving regulatory mechanisms for glutamatergic signal transduction and discuss possibilities for future drug development.  相似文献   

13.
14.
15.
Neuman KC  Nagy A 《Nature methods》2008,5(6):491-505
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.  相似文献   

16.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

17.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

18.
We have developed a panel of monoclonal antibodies against rat myogenin, a skeletal muscle regulatory protein of the bHLH family. Some of these monoclonals have been widely used by others, and details of their production are presented. Mapping the epitopes by immunoprecipitation of myogenin deletion mutants demonstrates that this panel recognizes epitopes spanning the entire molecule outside the HLH region. Four antibodies against epitopes outside the bHLH region interfere with the binding of myogenin/E-protein heterodimers to DNA sequences containing the myogenin heterodimer consensus recognition site. Three of these epitopes are partially masked in the heterodimers; antibody binding to these epitopes reduces the interactions between myogenin and E12. This suggests that surfaces outside the HLH dimerization domain may contribute to the stability of myogenin/E12 complexes. The binding of one antibody to its epitope did not appear to affect the myogenin/E12 interaction but nonetheless interfered with the binding of the complex to DNA, suggesting that this epitope lies near to a surface occupied by DNA. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The spatial distribution of intermolecular forces governs macromolecular interactions. The atomic force microscope, a relatively new tool for investigating interaction forces between nanometer-scale objects, can be used to produce spatially resolved maps of the surface or material properties of a sample; these include charge density, adhesion and stiffness, as well as the force required to break specific ligand-receptor bonds. Maps such as these will provide fundamental insights into biological structure and will become an important tool for characterizing technologically important biological systems.  相似文献   

20.
Protein-protein interactions have been widely used to study gene expression pathways and may be considered as a new approach to drug discovery. Here I report the development of a universal protein array (UPA) system that provides a sensitive, quantitative, multi-purpose, effective and easy technology to determine not only specific protein-protein interactions, but also specific interactions of proteins with DNA, RNA, ligands and other small chemicals. (i) Since purified proteins are used, the results can be easily interpreted. (ii) UPA can be used multiple times for different targets, making it economically affordable for most laboratories, hospitals and biotechnology companies. (iii) Unlike DNA chips or DNA microarrays, no additional instrumentation is required. (iv) Since the UPA uses active proteins (without denaturation and renaturation), it is more sensitive compared with most existing methods. (v) Because the UPA can analyze hundreds (even thousands on a protein microarray) of proteins in a single experiment, it is a very effective method to screen proteins as drug targets in cancer and other human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号