首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kv1.1 and Kv1.4 potassium channels are expressed as mature glycosylated proteins in brain, whereas they exhibited striking differences in degree of trans-Golgi glycosylation conversion and high cell surface expression when they were transiently expressed as homomers in cell lines. Kv1.4 exhibited a 70% trans-Golgi glycosylation conversion, whereas Kv1.1 showed none, and Kv1.4 exhibited a approximately 20-fold higher cell surface expression level as compared with Kv1.1. Chimeras between Kv1.4 and Kv1.1 and site-directed mutants were constructed to identify amino acid determinants that affected these processes. Truncating the cytoplasmic C terminus of Kv1.4 inhibited its trans-Golgi glycosylation and high cell surface expression (as shown by Li, D., Takimoto, K., and Levitan, E. S. (2000) J. Biol. Chem. 275, 11597-11602), whereas truncating this region on Kv1.1 did not affect either of these events, indicating that its C terminus is not a negative determinant for these processes. Exchanging the C terminus between these channels showed that there are other regions of the protein that exert a positive or negative effect on these processes. Chimeric constructs between Kv1.4 and Kv1.1 identified their outer pore regions as major positive and negative determinants, respectively, for both trans-Golgi glycosylation and cell surface expression. Site-directed mutagenesis identified a number of amino acids in the pore region that are involved in these processes. These data suggest that there are multiple positive and negative determinants on both Kv1.4 and Kv1.1 that affect channel folding, trans-Golgi glycosylation conversion, and cell surface expression.  相似文献   

2.
Kv1.1 and Kv1.4 potassium channels are plasma membrane glycoproteins involved in action potential repolarization. We have shown previously that glycosylation affects the gating function of Kv1.1 and that a pore region determinant of Kv1.1 and Kv1.4 affects their cell surface trafficking negatively or positively, respectively. Here we investigated the role of N-glycosylation of Kv1.1 and Kv1.4 on their protein stability, cellular localization pattern, and trafficking to the cell surface. We found that preventing N-glycosylation of Kv1.4 decreased its protein stability, induced its high partial intracellular retention, and decreased its cell surface protein levels, whereas it had little or no effect on these parameters for Kv1.1. Exchanging a trafficking pore region determinant between Kv1.1 and Kv1.4 reversed these effects of glycosylation on these chimeric channels. Thus it appeared that the Kv1.4 pore region determinant and the sugar tree attached to the S1-S2 linker showed some type of dependence in promoting proper trafficking of the protein to the cell surface, and this dependence can be transferred to chimeric Kv1.1 proteins that contain the Kv1.4 pore. Understanding the different trafficking programs of Kv1 channels, and whether they are altered by glycosylation, will highlight the different posttranslational mechanisms available to cells to modify their cell surface ion channel levels and possibly their signaling characteristics.  相似文献   

3.
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.  相似文献   

4.
Shaker-related or Kv1 voltage-gated K(+) channels play critical roles in regulating the excitability of mammalian neurons. Native Kv1 channel complexes are octamers of four integral membrane alpha subunits and four cytoplasmic beta subunits, such that a tremendous diversity of channel complexes can be assembled from the array of alpha and beta subunits expressed in the brain. However, biochemical and immunohistochemical studies have demonstrated that only certain complexes predominate in the mammalian brain, suggesting that regulatory mechanisms exist that ensure plasma membrane targeting of only physiologically appropriate channel complexes. Here we show that Kv1 channels assembled as homo- or heterotetrameric complexes had distinct surface expression characteristics in both transfected mammalian cells and hippocampal neurons. Homotetrameric Kv1.1 channels were localized to endoplasmic reticulum, Kv1.4 channels to the cell surface, and Kv1.2 channels to both endoplasmic reticulum and the cell surface. Heteromeric assembly with Kv1.4 resulted in dose-dependent increases in cell surface expression of coassembled Kv1.1 and Kv1.2, while coassembly with Kv1.1 had a dominant-negative effect on Kv1.2 and Kv1.4 surface expression. Coassembly with Kv beta subunits promoted cell surface expression of each Kv1 heteromeric complex. These data suggest that subunit composition and stoichiometry determine surface expression characteristics of Kv1 channels in excitable cells.  相似文献   

5.
The potassium ion channel Kv3.1b is a member of a family of voltage‐gated ion channels that are glycosylated in their mature form. In the present study, we demonstrate the impact of N‐glycosylation at specific asparagine residues on the trafficking of the Kv3.1b protein. Large quantities of asparagine 229 (N229)‐glycosylated Kv3.1b reached the plasma membrane, whereas N220‐glycosylated and unglycosylated Kv3.1b were mainly retained in the endoplasmic reticulum (ER). These ER‐retained Kv3.1b proteins were susceptible to degradation, when co‐expressed with calnexin, whereas Kv3.1b pools located at the plasma membrane were resistant. Mass spectrometry analysis revealed a complex type Hex3HexNAc4Fuc1 glycan as the major glycan component of the N229‐glycosylated Kv3.1b protein, as opposed to a high‐mannose type Man8GlcNAc2 glycan for N220‐glycosylated Kv3.1b. Taken together, these results suggest that trafficking‐dependent roles of the Kv3.1b potassium channel are dependent on N229 site‐specific glycosylation and N‐glycan structure, and operate through a mechanism whereby specific N‐glycan structures regulate cell surface expression.  相似文献   

6.
In the central and peripheral nervous system, the assembly of KCNQ3 with KCNQ2 as mostly heteromers, but also homomers, underlies “M-type” currents, a slowly-activating voltage-gated K+ current that plays a dominant role in neuronal excitability. KCNQ3 homomers yield much smaller currents compared to KCNQ2 or KCNQ4 homomers and KCNQ2/3 heteromers. This smaller current has been suggested to result either from divergent channel surface expression or from a pore that is more unstable in KCNQ3. Channel surface expression has been shown to be governed by the distal part of the C-terminus in which helices C and D are critical for channel trafficking and assembly. A sequence alignment of this region in KCNQ channels shows that KCNQ3 possesses a longer linker between helix C and D compared to the other KCNQ subunits. Here, we investigate the role of the extra residues of this linker on KCNQ channel expression. Deletion of these residues increased KCNQ3 current amplitudes. Total internal reflection fluorescence imaging and plasma membrane protein assays suggest that the increase in current is due to a higher surface expression of the channels. Conversely, introduction of the extra residues into the linker between helices C and D of KCNQ4 reduced current amplitudes by decreasing the number of KCNQ4 channels at the plasma membrane. Confocal imaging suggests a higher fraction of channels, which possess the extra residues of helix C-D linker, were retained within the endoplasmic reticulum. Such retention does not appear to lead to protein accumulation and activation of the unfolded protein response that regulates protein folding and maintains endoplasmic reticulum homeostasis. Taken together, we conclude that extra helix C-D linker residues play a role in KCNQ3 current amplitudes by controlling the exit of the channel from the endoplasmic reticulum.  相似文献   

7.
Kainate receptors (KARs) modulate synaptic transmission at both pre-synaptic and post-synaptic sites. The overlap in the distribution of KA-2 and GluR6/7 subunits in several brain regions suggests the co-assembly of these subunits in native KARs. The molecular mechanisms that control the assembly and surface expression of KARs are unknown. Unlike GluR5-7, the KA-2 subunit is unable to form functional homomeric KAR channels. We expressed the KA-2 subunit alone or in combination with other KAR subunits in HEK-293 cells. The cell surface expression of the KAR subunit homo- and heteromers were analysed using biotinylation and agonist-stimulated cobalt uptake. While GluR6 or GluR7 homomers were expressed on the cell surface, KA-2 alone was retained within the endoplasmic reticulum. We found that the cell surface expression of KA-2 was dramatically increased by co-expression with either of the low-affinity KAR subunits GluR5-7. However, co-expression with other related ionotropic glutamate receptor subunits (GluR1 and NR1) does not facilitate the cell surface expression of KA-2. The analysis of subcellular fractions of neocortex revealed that synaptic KARs have a relatively high KA-2 content compared to microsomal ones. Thus, KA-2 is likely to contain an endoplasmic reticulum retention signal that is shielded on assembly with other KAR subunits.  相似文献   

8.
γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.  相似文献   

9.
Hypoxia in solid tumors contributes to decreased immunosurveillance via down-regulation of Kv1.3 channels in T lymphocytes and associated T cell function inhibition. However, the mechanisms responsible for Kv1.3 down-regulation are not understood. We hypothesized that chronic hypoxia reduces Kv1.3 surface expression via alterations in membrane trafficking. Chronic hypoxia decreased Kv1.3 surface expression and current density in Jurkat T cells. Inhibition of either protein synthesis or degradation and endocytosis did not prevent this effect. Instead, blockade of clathrin-coated vesicle formation and forward trafficking prevented the Kv1.3 surface expression decrease in hypoxia. Confocal microscopy revealed an increased retention of Kv1.3 in the trans-Golgi during hypoxia. Expression of adaptor protein-1 (AP1), responsible for clathrin-coated vesicle formation at the trans-Golgi, was selectively down-regulated by hypoxia. Furthermore, AP1 down-regulation increased Kv1.3 retention in the trans-Golgi and reduced Kv1.3 currents. Our results indicate that hypoxia disrupts AP1/clathrin-mediated forward trafficking of Kv1.3 from the trans-Golgi to the plasma membrane thus contributing to decreased Kv1.3 surface expression in T lymphocytes.  相似文献   

10.
We have shown previously that truncating all of the variable cytoplasmic C-terminus of Kv1.1 potassium channels to G421stop had only a small inhibitory effect on their cell surface conductance density levels and cell surface protein levels. Here we investigated the role of a highly conserved cytoplasmic C-terminal charged region of five amino acids (HRETE) of the S6 transmembrane domain in the protein and conductance expression of Kv1.1, Kv1.2, and Kv1.4 channels. For Kv1.1 we found that E420stop, T419stop, and E418stop showed cell surface conductance densities and cell surface protein levels similar to full length control, whereas R417stop and H416stop exhibited essentially no conductance but their surface protein levels were similar to full length control. A bulky non-negatively charged hydrophilic amino acid at position 417 appeared to be critical for wild type gating of Kv1.1 because R417K and R417Q rescued conductance levels whereas R417A or R417E did not. The R417A mutation in the full length Kv1.1 also exhibited surface protein levels similar to control but it did not exhibit significant conductance. In contrast, mutation of the equivalent arginine to alanine in full length Kv1.2 and Kv1.4 appeared to have little or no effect on channel conductance but rather decreased cell surface protein levels by inducing partial high ER retention. These findings are consistent with the notion that the arginine amino acid in the HRETE region plays a different role in affecting conductance levels or cell surface protein levels of very closely related Kv1 potassium channels.  相似文献   

11.
Glycosylation of ion channel proteins dramatically impacts channel function. Here we characterize the asparagine (N)-linked glycosylation of voltage-gated K+ channel α subunits in rat brain and transfected cells. We find that in brain Kv1.1, Kv1.2 and Kv1.4, which have a single consensus glycosylation site in the first extracellular interhelical domain, are N-glycosylated with sialic acid-rich oligosaccharide chains. Kv2.1, which has a consensus site in the second extracellular interhelical domain, is not N-glycosylated. This pattern of glycosylation is consistent between brain and transfected cells, providing compelling support for recent models relating oligosaccharide addition to the location of sites on polytopic membrane proteins. The extent of processing of N-linked chains on Kv1.1 and Kv1.2 but not Kv1.4 channels expressed in transfected cells differs from that seen for native brain channels, reflecting the different efficiencies of transport of K+ channel polypeptides from the endoplasmic reticulum to the Golgi apparatus. These data show that addition of sialic acid-rich N-linked oligosaccharide chains differs among highly related K+ channel α subunits, and given the established role of sialic acid in modulating channel function, provide evidence for differential glycosylation contributing to diversity of K+ channel function in mammalian brain. Received: 17 December 1998/Accepted: 20 January 1999  相似文献   

12.
The cytoplasmic C-terminal domains of NR2 subunits have been proposed to modulate the assembly and trafficking of NMDA receptors. However, questions remain concerning which domains in the C terminus of NR2 subunits control the assembly of receptor complexes and how the assembled complexes are selectively trafficked through the various cellular compartments such as endoplasmic reticulum (ER) to the cell surface. In the present study, we found that the three amino acid tail after the TM4 region of NR2 subunits is necessary for surface expression of functional NMDA receptors, while truncations with only two amino acids following the TM4 region (NR2Delta2) completely eliminated surface expression of the NMDA receptor on co-expression with NR1-1a in HEK293 cells. FRET (fluorescence resonance energy transfer) analysis showed that these NR2Delta2 truncations are able to form homomers and heteromers on co-expression with NR1-1a. Furthermore, when NR2Delta2 subunits were cotransfected with either the NR1-4a or NR1-1a(AAA) mutant, lacking the ER retention motif (RRR), functional NMDA receptors were detected in the transfected HEK293 cells. Unexpectedly, we found that the replacement of five residues after TM4 with alanines gave results indistinguishable from those of NR2BDelta5 (EHLFY), demonstrating the short tail following the TM4 of NR2 subunits is not sequence-specific-dependent. Taken together, our results show that the C terminus of the NR2 subunits is not necessary for the assembly of NMDA receptor complexes, whereas a three amino acid long cytoplasmic tail following the TM4 of NR2 subunits is sufficient to overcome the ER retention existing in the C terminus of NR1, allowing the assembled NMDA receptors to reach the cell surface.  相似文献   

13.
Herpes simplex virus type 1 glycoprotein K (gK) and the UL20 protein (UL20p) are coordinately transported to the trans-Golgi network (TGN) and cell surfaces and are required for cytoplasmic virion envelopment at the TGN. In addition, cell surface expression of gK and UL20p is required for virus-induced cell fusion. Previously, confocal microscopy colocalization and intracellular transport experiments strongly suggested direct protein-protein interactions between gK and UL20p. Direct protein-protein interactions between gK and UL20p were demonstrated through reciprocal coimmunoprecipitation experiments, as well as with glutathione S-transferase (GST) pull-down experiments. A fusion protein consisting of the amino-terminal 66 amino acids of UL20p fused in-frame with GST was expressed in Escherichia coli and purified via glutathione column chromatography. Precipitation of GST-UL20p from mixtures of GST-UL20p fusion protein with cellular extracts containing gK specifically coprecipitated gK but not other viral glycoproteins. The purified UL20p-GST fusion protein reacted with all gK-associated protein species. It was concluded that the amino terminus of UL20p, most likely, interacted with gK domain III, which is predicted to lie intracellularly. UL20p-gK domain-specific interactions must serve important functions in the coordinate transport of UL20p and gK to the TGN, because retention of UL20p in the endoplasmic reticulum (ER) via the addition of an ER retention signal at the carboxyl terminus of UL20p forced the ER retention of gK and drastically inhibited intracellular virion envelopment and virus-induced cell fusion.  相似文献   

14.
Human dopamine D(2long) and D(3) receptors were modified by N-terminal addition of SNAP or CLIP forms of O(6)-alkylguanine-DNA-alkyltransferase plus a peptide epitope tag. Cells able to express each of these four constructs only upon addition of an antibiotic were established and used to confirm regulated and inducible control of expression, the specificity of SNAP and CLIP tag covalent labeling reagents, and based on homogenous time-resolved fluorescence resonance energy transfer, the presence of cell surface D(2long) and D(3) receptor homomers. Following constitutive expression of reciprocal constructs, potentially capable of forming and reporting the presence of cell surface D(2long)-D(3) heteromers, individual clones were assessed for levels of expression of the constitutively expressed protomer. This was unaffected by induction of the partner protomer and the level of expression of the partner required to generate detectable cell surface D(2long)-D(3) heteromers was defined. Such homomers and heteromers were found to co-exist and using a reconstitution of function approach both homomers and heteromers of D(2long) and D(3) receptors were shown to be functional, potentially via trans-activation of associated G protein. These studies demonstrate the ability of dopamine D(2long) and D(3) receptors to form both homomers and heteromers, and show that in cells expressing each subtype a complex mixture of homomers and heteromers co-exists at steady state. These data are of potential importance both to disorders in which D(2long) and D(3) receptors are implicated, like schizophrenia and Parkinson disease, and also to drugs exerting their actions via these sites.  相似文献   

15.
KChIP proteins regulate Shal, Kv4.x, channel expression by binding to a conserved sequence at the N terminus of the subunit. The binding of KChIP facilitates a redistribution of Kv4 protein to the cell surface, producing a large increase in current along with significant changes in channel gating kinetics. Recently we have shown that mutants of Kv4.2 lacking the ability to bind an intersubunit Zn(2+) between their T1 domains fail to form functional channels because they are unable to assemble to tetramers and remain trapped in the endoplasmic reticulum. Here we find that KChIPs are capable of rescuing the function of Zn(2+) site mutants by driving the mutant subunits to assemble to tetramers. Thus, in addition to known trafficking effects, KChIPs play a direct role in subunit assembly by binding to monomeric subunits within the endoplasmic reticulum and promoting tetrameric channel assembly. Zn(2+)-less Kv4.2 channels expressed with KChIP3 demonstrate several distinct kinetic changes in channel gating, including a reduced time to peak and faster entry into the inactivated state as well as extending the time to recover from inactivation by 3-4 fold.  相似文献   

16.
The cell surface density of functional Kir1.1 (ROMK, KCNJ1) channels in the renal collecting duct is precisely regulated to maintain potassium balance. Here, we explore the mechanism by which phosphorylation of Kir1.1a serine 44 controls plasmalemma expression. Studies in Xenopus oocytes, expressing wild-type, phosphorylation mimic (S44D), or phosphorylation null (S44A) Kir1.1a, revealed that phosphorylation of serine 44 is required to stimulate traffic of newly synthesized channels to the plasma membrane through a brefeldin A-sensitive pathway. ROMK channels were found to acquire mature glycosylation in a serine 44 phosphorylation-dependent manner, consistent with a phosphorylation-dependent trafficking step within the endoplasmic reticulum/Golgi. Serine 44 neighbors a string of three "RXR" motifs, reminiscent of basic trafficking signals involved in directing early transport steps within the secretory pathway. Replacement of the arginine residues with alanine (R35A, R37A, R39A, R41A, or all Arg to Ala) did not restore cell surface expression of the phospho-null S44A channel, making it unlikely that phosphorylation abrogates a nearby RXR-type endoplasmic reticulum (ER) localization signal. Instead, analysis of the compound S44D phospho-mimic mutants revealed that the neighboring arginine residues are also necessary for cell surface expression, identifying a structure that determines export in the biosynthetic pathway. Suppressor mutations in a putative dibasic ER retention signal, located within the cytoplasmic C terminus (K370A, R371A), restored cell surface expression of the phospho-null S44A channel to levels exhibited by the phospho-mimic S44D channel. Taken together, these studies indicate that phosphorylation of Ser44 drives an export step within the secretory pathway to override an independent endoplasmic reticulum localization signal.  相似文献   

17.
Aquaporin-2 (AQP2) is a pore-forming protein that is required for regulated reabsorption of water from urine. Mutations in AQP2 lead to nephrogenic diabetes insipidus, a disorder in which functional AQP2 is not expressed on the apical cell surface of kidney collecting duct principal cells. The mechanisms and pathways directing AQP2 from the endoplasmic reticulum to the Golgi complex and beyond have not been defined. We found that approximately 25% of newly synthesized AQP2 is glycosylated. Nonglycosylated and complex-glycosylated wild-type AQP2 are stable proteins with a half-life of 6-12 h and are both detectable on the cell surface. We show that AQP2 forms tetramers in the endoplasmic reticulum during or very early after synthesis and reaches the Golgi complex in 1-1.5 h. We also report that glycosylation is neither essential for tetramerization nor for transport from the endoplasmic reticulum to the Golgi complex. Instead, the N-linked glycan is important for exit from the Golgi complex and sorting of AQP2 to the plasma membrane. These results are important for understanding the molecular mechanisms responsible for the intracellular retention of AQP2 in nephrogenic diabetes insipidus.  相似文献   

18.
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.  相似文献   

19.
We investigated the membrane topology of Bves/Pop1A as a foundation to dissect the molecular basis and function of Bves/Pop1A trafficking during development. Bves contains two asparagine-linked glycosylation sites within the amino terminus and three putative membrane domains. Therefore, glycosylation assays were performed to determine if the amino terminus of Bves is delivered into the endoplasmic reticulum lumen and glycosylated. We establish that Bves from chick heart and transfected cells is glycosylated, implying that the amino terminus of cell surface molecules is extracellular. Three biochemically distinct approaches were utilized to determine the orientation of the carboxyl terminus of Bves. First, glycosylation of Bves at exogenous sites within the carboxyl terminus was only observed in a construct that lacked the third membrane domain, which presumably reversed the orientation of the carboxyl terminus. Second, co-expression of full-length Bves with soluble, carboxyl-terminal Bves constructs that reside in different subcellular compartments revealed that Bves-Bves interactions occur in the cytoplasm. Third, the immunoreactivity of endogenous Bves at the cell surface of epicardial cells was dramatically enhanced with detergent. These results suggest that the membrane topology of cell surface Bves/Pop1A is composed of an extracellular amino terminus, three transmembrane domains, and a cytoplasmic carboxyl terminus. We therefore hypothesize that the carboxyl terminus regulates the cellular distribution of Bves/Pop1A during coronary vessel development.  相似文献   

20.
Voltage-gated potassium (Kv) 1.1 channels undergo a specific enzymatic RNA deamination, generating a channel with a single amino acid exchange located in the inner pore cavity (Kv1.1I400V). We studied I400V-edited Kv1.1 channels in more detail and found that Kv1.1I400V gave rise to much smaller whole-cell currents than Kv1.1. To elucidate the mechanism behind this current reduction, we conducted electrophysiological recordings on single-channel level and did not find any differences. Next we examined channel surface expression in Xenopus oocytes and HeLa cells using a chemiluminescence assay and found the edited channels to be less readily expressed at the surface membrane. This reduction in surface expression was verified by fluorescence imaging experiments. Western blot analysis for comparison of protein abundances and glycosylation patterns did not show any difference between Kv1.1 and Kv1.1I400V, further indicating that changed trafficking of Kv1.1I400V is causing the current reduction. Block of endocytosis by dynasore or AP180C did not abolish the differences in current amplitudes between Kv1.1 and Kv1.1I400V, suggesting that backward trafficking is not affected. Therefore, our data suggest that I400V RNA editing of Kv1.1 leads to a reduced current size by a decreased forward trafficking of the channel to the surface membrane. This effect is specific for Kv1.1 because coexpression of Kv1.4 channel subunits with Kv1.1I400V abolishes these trafficking effects. Taken together, we identified RNA editing as a novel mechanism to regulate homomeric Kv1.1 channel trafficking. Fine-tuning of Kv1.1 surface expression by RNA editing might contribute to the complexity of neuronal Kv channel regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号