首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen M  Zou M  Fu B  Li X  Vibranovski MD  Gan X  Wang D  Wang W  Long M  He S 《PloS one》2011,6(7):e21466
The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes.  相似文献   

2.
Genome-wide RNAi   总被引:16,自引:0,他引:16  
In many species, double-stranded RNA can specifically and effectively silence genes. This newly discovered biological phenomenon, called RNA interference (RNAi), has practical implications for functional genomics. As shown by two recent reports, RNAi provides a rapid method to test the function of genes in the nematode Caenorhabditis elegans; most of the genes on C. elegans chromosome I and III have now been tested for RNAi phenotypes. The results validate RNAi as a powerful functional genomics tool for C. elegans, and point the way for similar large-scale studies in other species.  相似文献   

3.
4.
《Genomics》2020,112(3):2410-2417
Described as “junk” DNA, pseudogenes are dead structures of previously active genes present in genomes. Pseudogenes are categorized into two main classes: processed pseudogenes, formed through retrotransposition, and non-processed pseudogenes, typically originated from gene decay following duplication events. The term “processed pseudogene” has changed to “retrocopy” since they are likely to evolve new functional roles and became a retrogene. Here, we surveyed 38,080 retrocopies from chimpanzee, dog, human, mouse, and rat genomes to assess their potential adaptive value. The retrocopies inserted in the same chromosome of the parental gene have higher chances of remain potentially “active” (absence of premature stop codons and frameshifts) (~26.1%), while those placed into a different chromosome have a twofold decrease chance of continuing potentially “active” (~7.52%). The genomic context of their placement seems associated with their expression. Retrocopies placed in intragenic regions and the same sense of the “host” gene have higher chances of being expressed relative to other genomic contexts. The proximity of retrocopies to their parental gene is associated with a lower decay rate, and their location likely influence their expression. Thus, despite their unclear role, retrocopies are probably involved in adaptive processes. Our results evidence natural selection acting in retrocopies.  相似文献   

5.
Sex-determination gene and pathway evolution in nematodes   总被引:11,自引:0,他引:11  
The pathway that controls sexual fate in the nematode Caenorhabditis elegans has been well characterized at the molecular level. By identifying differences between the sex-determination mechanisms in C. elegans and other nematode species, it should be possible to understand how complex sex-determining pathways evolve. Towards this goal, orthologues of many of the C. elegans sex regulators have been isolated from other members of the genus Caenorhabditis. Rapid sequence evolution is observed in every case, but several of the orthologues appear to have conserved sex-determining roles. Thus extensive sequence divergence does not necessarily coincide with changes in pathway structure, although the same forces may contribute to both. This review summarizes recent findings and, with reference to results from other animals, offers explanations for why sex-determining genes and pathways appear to be evolving rapidly. Experimental strategies that hold promise for illuminating pathway differences between nematodes are also discussed.  相似文献   

6.
Zhao Z  Thomas JH  Chen N  Sheps JA  Baillie DL 《Genetics》2007,175(3):1407-1418
ABC transporters constitute one of the largest gene families in all species. They are mostly involved in transport of substrates across membranes. We have previously demonstrated that the Caenorhabditis elegans ABC family shows poor one-to-one gene orthology with other distant model organisms. To address the evolution dynamics of this gene family among closely related species, we carried out a comparative analysis of the ABC family among the three nematode species C. elegans, C. briggsae, and C. remanei. In contrast to the previous observations, the majority of ABC genes in the three species were found in orthologous trios, including many tandemly duplicated ABC genes, indicating that the gene duplication took place before speciation. Species-specific expansions of ABC members are rare and mostly observed in subfamilies A and B. C. briggsae and C. remanei orthologous ABC genes tend to cluster on trees, with those of C. elegans as an outgroup, consistent with their proposed species phylogeny. Comparison of intron/exon structures of the highly conserved ABCE subfamily members also indicates a closer relationship between C. briggsae and C. remanei than between either of these species and C. elegans. A comparison between insect and mammalian species indicates lineage-specific duplications or deletions of ABC genes, while the family size remains relatively constant. Sites undergoing positive selection within subfamily D, which are implicated in very-long-chain fatty acid transport, were identified. The evolution of these sites might be driven by the changes in food source with time.  相似文献   

7.
We describe a novel screen to isolate pharyngeal cell morphology mutants in Caenorhabditis elegans using myo-2::GFP to rapidly identify abnormally shaped pharynxes in EMS (Ethyl Methanesulfonate) mutagenized worms. We observed over 83 C. elegans lines with distinctive pharyngeal phenotypes in worms surviving to the L1 larval stage, with phenotypes ranging from short pharynx, unattached pharynx, missing cells, asymmetric morphology, and non-adherent pharynx cells. Thirteen of these mutations have been chromosomally mapped using Single Nucleotide Polymorphisms (SNPs) and deficiency strain complementation. Our studies have focused on genetically mapping and functionally testing two phenotypes, the short pharynx and the loss of muscle cohesion phenotypes. We have also identified new alleles of sma-1, and our screen suggests many genes directing pharynx assembly and structure may be either pharynx specific or less critical in other tissues.  相似文献   

8.
Although the contribution of retrogenes to the evolution of genes and genomes has long been recognized, the evolutionary patterns of very recently derived retrocopies that are still polymorphic within natural populations have not been much studied so far. We use here a set of 2,025 such retrocopies in nine house mouse populations from three subspecies (Mus musculus domesticus, M. m. musculus, and M. m. castaneus) to trace their origin and evolutionary fate. We find that ancient house-keeping genes are significantly more likely to generate retrocopies than younger genes and that the propensity to generate a retrocopy depends on its level of expression in the germline. Although most retrocopies are detrimental and quickly purged, we focus here on the subset that appears to be neutral or even adaptive. We show that retrocopies from X-chromosomal parental genes have a higher likelihood to reach elevated frequencies in the populations, confirming the notion of adaptive effects for “out-of-X” retrogenes. Also, retrocopies in intergenic regions are more likely to reach higher population frequencies than those in introns of genes, implying a more detrimental effect when they land within transcribed regions. For a small subset of retrocopies, we find signatures of positive selection, indicating they were involved in a recent adaptation process. We show that the population-specific distribution pattern of retrocopies is phylogenetically informative and can be used to infer population history with a better resolution than with SNP markers.  相似文献   

9.
10.
Differences between species have been suggested to largely reside in the network of connections among the genes. Nevertheless, the rate at which these connections evolve has not been properly quantified. Here, we measure the extent to which co-regulation between pairs of genes is conserved over large phylogenetic distances; between two eukaryotes Caenorhabditis elegans and Saccharomyces cerevisiae, and between two prokaryotes Escherichia coli and Bacillus subtilis. We first construct a reliable set of co-regulated genes by combining various functional genomics data from yeast, and subsequently determine conservation of co-regulation in worm from the distribution of co-expression values. For B.subtilis and E.coli, we use known operons and regulons. We find that between 76 and 80% of the co-regulatory connections are conserved between orthologous pairs of genes, which is very high compared with previous estimates and expectations regarding network evolution. We show that in the case of gene duplication after speciation, one of the two inparalogous genes tends to retain its original co-regulatory relationship, while the other loses this link and is presumably free for differentiation or sub-functionalization. The high level of co-regulation conservation implies that reliably predicted functional relationships from functional genomics data in one species can be transferred with high accuracy to another species when that species also harbours the associated genes.  相似文献   

11.
The Genetics of Levamisole Resistance in the Nematode CAENORHABDITIS ELEGANS   总被引:10,自引:10,他引:0  
We have characterized a small group of genes (13 loci) in the nematode Caenorhabditis elegans that, when mutated, confer resistance to the potent anthelmintic levamisole. Mutants at the 7 loci conferring the most extreme resistance generally possess almost identical visible and pharmacological phenotypes: uncoordinated motor behavior, most severe in early larval life, extreme resistance to cholinergic agonists and sensitivity to hypo-osmotic shock. Mutants with exceptional phenotypes suggest possible functions for several of the resistance loci. The most extreme mutants can readily be selected by their drug resistance (211 mutants, as many as 74 alleles of one gene). The more common resistance loci are likely to be unessential genes, while loci identified by only a few alleles may be essential genes or genes conferring resistance only when mutated in a special way. We propose that these mutants represent a favorable system for understanding how a small group of related genes function in a simple animal. The extreme drug resistance of these mutants makes them useful tools for the genetic manipulation of C. elegans. And, as the most resistant class of mutants might lack pharmacologically functional acetylcholine receptors (Lewis et al. 1980), these mutants may also be of some neurobiological significance.  相似文献   

12.
Hodgkin J 《Genetics》2002,162(2):767-780
The natural sexes of the nematode Caenorhabditis elegans are the self-fertilizing hermaphrodite (XX) and the male (XO). The underlying genetic pathway controlling sexual phenotype has been extensively investigated. Mutations in key regulatory genes have been used to create a series of stable populations in which sex is determined not by X chromosome dosage, but in a variety of other ways, many of which mimic the diverse sex-determination systems found in different animal species. Most of these artificial strains have male and female sexes. Each of seven autosomal genes can be made to adopt a role as the primary determinant of sex, and each of the five autosomes can carry the primary determinant, thereby becoming a sex chromosome. Strains with sex determination by fragment chromosomes, episomes, compound chromosomes, or environmental factors have also been constructed. The creation of these strains demonstrates the ease with which one sex-determination system can be transformed into another.  相似文献   

13.
Thomas JH 《Genetics》2006,172(4):2269-2281
Among a large number of homologous gene clusters in C. elegans, two gene families that appear to undergo concerted evolution were studied in detail. Both gene families are nematode specific and encode small secreted proteins of unknown function. For both families in three Caenorhabditis species, concerted groups of genes are characterized by close genomic proximity and by genes in inverted orientation. The rate of protein evolution in one of the two families could be calibrated by comparison with a closely related nonconcerted singleton gene with one-to-one orthologs in all three species. This comparison suggests that protein evolution in concerted gene clusters is two- to sevenfold accelerated. A broader survey of clustered gene families, focused on adjacent inverted gene pairs, identified an additional seven families in which concerted evolution probably occurs. All nine identified families encode relatively small proteins, eight of them encode putative secreted proteins, and most of these have very unusual amino acid composition or sequence. I speculate that these genes encode rapidly evolving antimicrobial peptides.  相似文献   

14.
15.
Zhou J  Liao J  Zheng X  Shen H 《BMB reports》2012,45(3):133-140
Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection. [BMB reports 2012; 45(3): 133-140].  相似文献   

16.
Operons are clusters of genes that are co-regulated from a common promoter. Operons are typically associated with prokaryotes, although a small number of eukaryotes have been shown to possess them. Among metazoans, operons have been extensively characterized in the nematode Caenorhabditis elegans in which ~15% of the total genes are organized into operons. The most recent genome assembly for the ascidian Ciona intestinalis placed ~20% of the genes (2909 total) into 1310 operons. The majority of these operons are composed of two genes, while the largest are composed of six. Here is reported a computational analysis of the genes that comprise the Ciona operons. Gene ontology (GO) terms were identified for about two-thirds of the operon-encoded genes. Using the extensive collection of public EST libraries, estimates of temporal patterns of gene expression were generated for the operon-encoded genes. Lastly, conservation of operons was analyzed by determining how many operon-encoded genes were present in the ascidian Ciona savignyi and whether these genes were organized in orthologous operons. Over 68% of the operon-encoded genes could be assigned one or more GO terms and 697 of the 1310 operons contained genes in which all genes had at least one GO term. Of these 697 operons, GO terms were shared by all of the genes within 146 individual operons, suggesting that most operons encode genes with unrelated functions. An analysis of operon gene expression from nine different EST libraries indicated that for 587 operons, all of the genes that comprise an individual operon were expressed together in at least one EST library, suggesting that these genes may be co-regulated. About 50% (74/146) of the operons with shared GO terms also showed evidence of gene co-regulation. Comparisons with the C. savignyi genome identified orthologs for 1907 of 2909 operon genes. About 38% (504/1310) of the operons are conserved between the two Ciona species. These results suggest that like C. elegans, operons in Ciona are comprised of a variety of genes that are not necessarily related in function. The genes in only 50% of the operons appear to be co-regulated, suggesting that more complex gene regulatory mechanisms are likely operating.  相似文献   

17.
Innexins in C. elegans   总被引:2,自引:0,他引:2  
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins.  相似文献   

18.
Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i) that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii) that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii) that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.  相似文献   

19.
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.  相似文献   

20.
The origin and subsequent evolution of new genes have been considered as an important source of genetic and phenotypic diversity in organisms. Dog breeds show great phenotypic diversity for morphological, physiological, and behavioral traits. However, the contributions of newly originated retrogenes, which provide important genetic bases for dog species differentiation and adaptive traits, are largely unknown. Here, we analyzed the dog genome to identify new RNA‐based duplications and comprehensively investigated their origin, evolution, functions in adaptive traits, and gene movement processes. First, we totally identified 3,025 retrocopies including 476 intact retrogenes, 2,518 retropseudogenes, and 31 chimerical retrogenes. Second, selective pressure along with ESTs expression analysis showed that most of the intact retrogenes were significantly under stronger purifying selection and subjected to more functional constraints when compared to retropseudogenes. Furthermore, a large number of retrocopies and chimerical retrogenes that occurred approximately 22 million years ago implied a burst of retrotransposition in the dog genome after the divergence time between dog and its closely related species red fox. Interestingly, GO and pathway analyses showed that new retrogenes had expanded in glutathione biosynthetic/metabolic process which likely provided important genetic basis for dogs' adaptation to scavenge human waste dumps. Finally, consistent with the results in human and mouse, a significant excess of functional retrogenes movement on and off the X chromosome in the dog confirmed a general pattern of gene movement process in mammals which was likely driven by natural selection or sexual antagonism. Together, these results increase our understanding that new retrogenes can reshape the dog genome and provide further exploration of the molecular mechanisms underlying the dogs' adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号