首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical interpretations of Neandertal skeletal robusticity suggest extremely high activity levels compared to modern humans. Such activity patterns imply high energy requirements; yet it has been argued that Neandertals were also inefficient foragers. The present study addresses this apparent conflict by estimating energy needs in Neandertals and then evaluating those estimates in the context of energetic and foraging data compiled for contemporary human foragers and nonhuman primates. Energy demands for Neandertals were determined by first predicting basal metabolic rates (BMR) from body weight estimates using human standards developed by the World Health Organization [FAO/WHO/UNU (1985) Energy and Protein Requirements. Report of the Joint FAO/WHO/UNU Export Committee, Geneva: WHO]. Total daily energy expenditure (kcal/day) was then estimated assuming high levels of physical activity (i.e., 2--3 x BMR), comparable to those observed among subsistence-level populations today. These estimates of energy requirements (ranging from 3000--5500 kcal/day) were then used to determine Neandertal foraging efficiency assuming (1) minimal survival-level foraging returns, and (2) daily foraging times longer than those observed among any contemporary foraging group and comparable to a nonhuman primate. Even with these extremely conservative parameters, estimates of Neandertal foraging efficiency (approximately 800--1150 kcal/h foraged) were comparable to those observed among living hunter-gatherers. These results indicate that if Neandertals did have heavy activity levels, as implied by their skeletal robusticity, they would have required foraging efficiencies within the range observed among modern groups. Thus, Neandertals could have been either highly active or poor foragers, but they could not have been both.  相似文献   

2.
The relationship between energy expenditure and obesity was examined in prepubertal children. Consenting fifth graders underwent Tanner Staging, weight, height and skinfold measurements. Subjects were selected for further study to obtain equal numbers of girls and boys with a wide range of body composition. Weight, total daily energy expenditure (TDEE) by doubly labeled water (DLW), resting metabolic rate (RMR), and body composition were measured. Children were grouped into level of obesity based on tertiles of subscapular plus triceps skinfolds. The skinfold tertiles did quite well in grouping subjects by degree of obesity, as differences in percent fat in each tertile were significantly different. There were no differences in fat-free mass between the groups, while the highest tertile group weighed 14 kg more than the lowest. For DLW, energy expenditure was calculated using day 8 and day 9 urine samples as the final time point to examine precision. Mean energy expenditure using either day was nearly identical (2220 ± 400 vs. 2300 ± 370 kcal/d), with a CV of the difference of 5.5%. No differences in RMR, energy expended in activity, or TDEE between the three groups were observed. A reduction in RMR or TDEE could not explain differences in obesity in these prepubertal children. However, the fact that the heaviest children expended the same amount of energy in activity and had the same TDEE as the leanest, while weighing 14 kg more, indicates that the obese children had a reduced activity level.  相似文献   

3.
The thermic effect of feeding (TEF: increase in energy expenditure following acute energy intake) is an important physiological determinant of total daily energy expenditure and thus energy balance. Approximately 40% of TEF is believed to be mediated by sympathoadrenal activation and consequent beta-adrenergic receptor stimulation of metabolism. In sedentary adults, acute administration of ascorbic acid, a potent antioxidant, augments the thermogenic response to beta-adrenergic stimulation. We hypothesized that acute ascorbic acid administration augments TEF in sedentary overweight and obese adults. Energy expenditure was determined (ventilated hood technique) before and 4 h after consumption of a liquid-mixed meal (caloric equivalent 40% of resting energy expenditure (REE)) in 11 sedentary, overweight/obese adults (5 men, 6 women; age: 24 +/- 2 years; BMI: 28.5 +/- 1.0 kg/m(2) (mean +/- s.e.)) on two separate, randomly ordered occasions: during continuous intravenous administration of saline (placebo control) and/or ascorbic acid (0.05 g/kg fat-free mass). Acute ascorbic acid administration prevented the increase in plasma concentration of oxidized low-density lipoprotein in the postprandial state (P = 0.04), but did not influence REE (1,668 +/- 107 kcal/day vs.1,684 +/- 84 kcal/day; P = 0.91) or the area under the TEF response curve (33.4 +/- 2.4 kcal vs. 30.5 +/- 3.6 kcal; P = 0.52) (control vs. ascorbic acid, respectively). Furthermore, acute ascorbic acid administration had no effect on respiratory exchange ratio, heart rate, or arterial blood pressure in the pre- and postabsorptive states (all P > 0.64). These data imply that the attenuated TEF commonly observed with sedentary lifestyle and obesity is not modulated by ascorbic acid-sensitive oxidative stress.  相似文献   

4.
Christian KA  Webb JK  Schultz TJ 《Oecologia》2003,136(4):515-523
We studied the physiological ecology of bluetongue lizards (Tiliqua scincoides) on the Adelaide River floodplain in tropical Australia to determine the seasonal patterns of energy expenditure and to determine the mechanisms by which seasonal differences were achieved. Field metabolic rates (FMR) were significantly lower in the dry season (37.6 kJ kg(-1) day(-1); n=9) than in the wet (127.3 kJ kg(-1) day(-1); n=7). Water flux was also lower in the dry season (6.8 ml kg(-1) day(-1); n=9) than in the wet (39.4 ml kg(-1) day(-1); n=7). Measurements of body temperatures (T(b)) and movements of free-ranging animals, and standard metabolic rate (SMR) of recently caught animals, allowed a detailed analysis of energy budgets for wet and dry seasons. In the dry, bluetongue lizards expended 90 kJ kg(-1) day(-1) less energy than in the wet season. Unlike some other lizards of the wet-dry tropics, SMR did not differ between seasons. About 5% of the seasonal difference in FMR was due to lower night time T(b) during the dry season, and about 7% was due to lower diurnal T(b). The remaining 88% of the decrease in energy expended in the dry season was due to a substantial decrease in other costs that may include reproduction, growth, digestion and activity. If we assume the animals fed daily and the costs of digestion are taken into account, the estimates are: 14% of the savings result from lower T(b) at night, 20% from lower T(b) in the day, and 66% result from decreased activity. It is therefore apparent that, unlike some agamid and varanid lizards that use a combination of behavioural and physiological mechanisms to conserve energy when food and water are limited, bluetongue lizards primarily use behavioural mechanisms to achieve a dramatic reduction in energy expenditure in the dry season.  相似文献   

5.
Metabolic equivalent: one size does not fit all.   总被引:2,自引:0,他引:2  
The metabolic equivalent (MET) is a widely used physiological concept that represents a simple procedure for expressing energy cost of physical activities as multiples of resting metabolic rate (RMR). The value equating 1 MET (3.5 ml O2 x kg(-1) x min(-1) or 1 kcal x kg(-1) x h(-1)) was first derived from the resting O2 consumption (VO2) of one person, a 70-kg, 40-yr-old man. Given the extensive use of MET levels to quantify physical activity level or work output, we investigated the adequacy of this scientific convention. Subjects consisted of 642 women and 127 men, 18-74 yr of age, 35-186 kg in weight, who were weight stable and healthy, albeit obese in some cases. RMR was measured by indirect calorimetry using a ventilated hood system, and the energy cost of walking on a treadmill at 5.6 km/h was measured in a subsample of 49 men and 49 women (26-45 kg/m2; 29-47 yr). Average VO2 and energy cost corresponding with rest (2.6 +/- 0.4 ml O2 x kg(-1) x min(-1) and 0.84 +/- 0.16 kcal x kg(-1) x h(-1), respectively) were significantly lower than the commonly accepted 1-MET values of 3.5 ml O2 x kg(-1) x min(-1) and 1 kcal x kg(-1) x h(-1), respectively. Body composition (fat mass and fat-free mass) accounted for 62% of the variance in resting VO2 compared with age, which accounted for only 14%. For a large heterogeneous sample, the 1-MET value of 3.5 ml O2 x kg(-1) x min(-1) overestimates the actual resting VO2 value on average by 35%, and the 1-MET of 1 kcal/h overestimates resting energy expenditure by 20%. Using measured or predicted RMR (ml O2 x kg(-1) x min(-1) or kcal x kg(-1) x h(-1)) as a correction factor can appropriately adjust for individual differences when estimating the energy cost of moderate intensity walking (5.6 km/h).  相似文献   

6.
To determine whether female athletes have unusually low energy requirements as suggested by many food intake studies, energy expenditure (EE) and intake were assessed in nine elite distance runners [26 +/- 3 (SD) yr, 53 +/- 4 kg, 12 +/- 3% body fat, and 66 +/- 4 ml.kg-1.min-1 maximal O2 uptake]. Subjects were admitted to a metabolic ward for 40 h during which 24-h sedentary EE was measured in a respiratory chamber. Free-living EE was then assessed by the doubly labeled water method for the next 6 days while the women recorded all food intake, daily body weight, and training mileage (10 +/- 3 miles/day). Energy intakes estimated from free-living EE (2,826 +/- 312 kcal/day) and body weight changes (-84 +/- 71 g/day) averaged 221 +/- 550 kcal/day in excess of those calculated from food records (2,193 +/- 466 kcal/day). The energy cost of training (1,087 +/- 244 kcal/day) was calculated as the difference between free-living EE and 24-h EE in the respiratory chamber (1,681 +/- 84 kcal/day) corrected for the thermic effect of food of the extra energy intake. These data do not support the hypothesis that training as a distance runner results in metabolic adaptations that lower energy requirements in women.  相似文献   

7.
We determined whether activity energy expenditure (AEE, from doubly labeled water and indirect calorimetry) or physical activity [7-day physical activity recall (PAR)] was more related to adiposity and the validity of PAR estimated total energy expenditure (TEE(PAR)) in prepubertal and pubertal boys (n = 14 and 15) and girls (n = 13 and 18). AEE, but not physical activity hours, was inversely related to fat mass (FM) after accounting for the fat-free mass, maturation, and age (partial r = -0.35, P < or = 0.01). From forward stepwise regression, pubertal maturation, AEE, and gender predicted FM (r(2) = 0.36). Abdominal visceral fat and subcutaneous fat were not related to AEE or activity hours after partial correlation with FM, maturation, and age. When assuming one metabolic equivalent (MET) equals 1 kcal. kg body wt(-1). h(-1), TEE(PAR) underestimated TEE from doubly labeled water (TEE bias) by 555 kcal/day +/- 2 SD limits of agreement of 913 kcal/day. The measured basal metabolic rate (BMR) was >1 kcal. kg body wt(-1). h(-1) and remained so until 16 yr of age. TEE bias was reduced when setting 1 MET equal to the measured (bias = 60 +/- 51 kcal/day) or predicted (bias = 53 +/- 50 kcal/day) BMR but was not consistent for an individual child (+/- 2 SD limits of agreement of 784 and 764 kcal/day, respectively) or across all maturation groups. After BMR was corrected, TEE bias remained greatest in the prepubertal girls. In conclusion, in children and adolescents, FM is more strongly related to AEE than activity time, and AEE, pubertal maturation, and gender explain 36% of the variance in FM. PAR should not be used to determine TEE of individual children and adolescents in a research setting but may have utility in large population-based pediatric studies, if an appropriate MET value is used to convert physical activity data to TEE data.  相似文献   

8.
Various aspects of energy metabolism and feed digestibility were evaluated in two reportedly improved strains of Nile tilapia (Oreochromis niloticus) namely GIFT (genetically improved farmed tilapia) and GMNT (genetically male Nile tilapia) and compared with those of CNT (conventional Nile tilapia). Fish were stocked individually in a computer-controlled respirometer system at 27+/-0.1 degrees C for 10 weeks. Metabolic rates were measured at three different feeding levels: starved, maintenance (3.0 g kg(-0.8) day(-1)) and growth (7.5 g kg(-0.8) day(-1)) using a fishmeal based feed containing TiO2 marker (41% crude protein, 9% crude lipid and 19 kJ (g DM)(-1) gross energy). The standard metabolic rate (SMR), measured at the beginning of the experiment (45.4+/-4.6, 52.4+/-7.7 and 46.8+/-4.6 mg O2 kg(-0.8) h(-1) respectively for GIFT, GMNT and CNT), did not differ significantly between the groups (p<0.05). Similarly, non-significant differences were also observed in the routine metabolic rates under starved, maintenance and growth conditions but the variability was higher in the case of GMNT and CNT than in GIFT. The latter group showed a significantly lower active metabolic rate (145 mg O2 kg(-0.8) h(-1)) compared to GMNT and CNT (232 and 253 mg O2 kg(-0.8) h(-1), respectively) at maintenance feeding level. The specific dynamic action (% offered feed energy) showed no significant differences among the groups. Digestibility coefficients of feed dry matter, protein, lipid and energy for the three tilapia groups also did not differ significantly. Therefore, we concluded that the genetic improvement or modification in the GIFT or GMNT might not upgrade the inherent physiological potential compared to CNT as far as energy metabolism and digestion efficiencies are concerned.  相似文献   

9.
Biological diversity is metabolic diversity: Differences in anatomy, physiology, life history, and activity reflect differences in energy allocation and expenditure among traits and tasks. Traditional frameworks in primatology, human ecology, public health, and paleoanthropology view daily energy expenditure as being more variable within than between species, changing with activity level but essentially fixed for a given body size. Growing evidence turns this view on its head. Total energy expenditure (kcal/d), varies relatively little within species, despite variation in physical activity; it varies considerably among species even after controlling for the effect of body size. Embracing this emerging paradigm requires rethinking potential trade‐offs in energy allocation within and between species, assessing evidence of metabolic acceleration within lineages, and abandoning activity‐based estimates of total energy expenditure. Difficult and exciting work lies ahead in the effort to untangle the ecological and evolutionary pressures shaping primate metabolic diversity.  相似文献   

10.
P. J. Moors 《Oecologia》1977,27(3):185-202
Summary The average respiratory quotient of weasels was 0.73. There were significant differences in average daily metabolic rate (ADMR) between the sexes and six experimental temperatures. As temperature decreased the mean ADMR increased, with a relatively greater rise for females. Regression equations of ADMR on temperature were Y=483.2–9.6X kcal/kg/day for males, and Y=625.3–15.0X kcal/kg/day for females. The minimum metabolic rate measured for males was 6.6 kcal/kg/h, and the maximum 25.7 kcal/kg/h. The relationship between ADMR and body weight varied with different temperatures, but was consistent with the hypothesis that ADMR was proportional to metabolic weight. The energetic costs of activity for my captive weasels were more than 20% of their daily total energy expenditure. Data on metabolism supported the conclusion that long, thin mustelids lose heat faster than normally-shaped mammals of the same weight.The calorific contents of foods, faeces and urine from feeding trials were determined. There were significant differences in the calorific content of faeces between the sexes, and of faeces and urine between diets.Four natural foods (Microtus, Apodemus, rabbit, starling) were offered during feeding trials. Daily food consumption varied between the diets, but small weasels always ate relatively more than large ones. Mean consumption was 0.33 g/g/day for males, and 0.36 g/g/day for females. Weasels on low-bulk diets (rabbit, starling) lost at least as much energy in urine as in faeces. There were significant differences in assimilation efficiency between the sexes and diets. The average efficiency for males was 78.2%, and 79.8% for females. Bulky foods lowered assimilation efficiencies by up to 9%.Daily energy requirements for maintenance calculated from ADMR data were compared with those from feeding trials. On the Microtus diet weasels expended 18.6–30.1% more energy on maintenance than predicted by the ADMR results, whereas on the other diets they expended 2.7–31.4% less energy. Estimates from ADMR data were probably more accurate.  相似文献   

11.
The purpose of this study was to determine whether there are differences in energy intake or energy expenditure that distinguish overweight/obese women with and without binge eating disorder (BED). Seventeen overweight/obese women with BED and 17 overweight/obese controls completed random 24-h dietary recall interviews, and had total daily energy expenditure (TDEE) assessed by the doubly labeled water (DLW) technique with concurrent food log data collection. Participants received two baseline dual-energy X-ray absorptiometry (DXA) scans and had basal metabolic rate (BMR) and thermic effect of food (TEF) measured using indirect calorimetry. Results indicated no between group differences in TDEE, BMR, and TEF. As in our previous work, according to dietary recall data, the BED group had significantly higher caloric intake on days when they had binge eating episodes than on days when they did not (3,255 vs. 2,343 kcal). There was no difference between BED nonbinge day intake and control group intake (2,233 vs. 2,140 kcal). Similar results were found for food log data. Dietary recall data indicated a trend toward higher average daily intake in the BED group (2,587 vs. 2,140 kcal). Furthermore, when comparing TDEE to dietary recall and food log data, both groups displayed significant under-reporting of caloric intake of similar magnitudes ranging from 20 to 33%. Predicted energy requirements estimated via the Harris-Benedict equation (HBE) underestimated measured TDEE by 23-24%. Our data suggest that increased energy intake reported by BED individuals is due to increased food consumption and not metabolic or under-reporting differences.  相似文献   

12.
13.
We compared the accuracy of two physical activity recall questionnaires and a motion detector in 45- to 84-yr-old women (n = 35) and men (n = 32), using doubly labeled water (DLW) in conjunction with indirect calorimetry as the criterion measure. Subjects were administered the Yale Physical Activity Survey (YPAS) and Minnesota Leisure Time Physical Activity Questionnaire (LTA). Physical activity energy expenditure was determined over a 10-day period by using a Caltrac uniaxial accelerometer and DLW in conjunction with indirect calorimetry. In older women, Minnesota LTA (386 +/- 228 kcal/day) and Caltrac (379 +/- 162 kcal/day) underestimated physical activity by approximately 55% compared with DLW (873 +/- 244 kcal/day). No difference was observed between daily physical activity measured by the YPAS (863 +/- 447 kcal/day) and DLW in older women. In older men, Minnesota LTA (459 +/- 288 kcal/day) and Caltrac (554 +/- 242 kcal/day) underestimated daily physical activity by approximately 50-60% compared with DLW (1,211 +/- 429 kcal/day). No difference was found between physical activity measured by the YPAS (1,107 +/- 612 kcal/day) and DLW in older men. Despite no difference in mean physical activity levels between YPAS and DLW in women and men, Bland and Altman (Lancet 1: 307-310, 1986) analyses demonstrated poor concordance between DLW and YPAS (i.e., limits of agreement = -1,310-1,518 kcal/day). Our data suggest that the Minnesota LTA recall and Caltrac uniaxial accelerometer may significantly underestimate free-living daily physical activity energy expenditure in older women and men. Although the YPAS compares favorably with DLW on a group basis, its use as a proxy measure of individual daily physical activity energy expenditure may be limited in older women and men.  相似文献   

14.
Accurate estimations of energy requirements at the population level are crucial because of disease processes associated with energy imbalance. The present objective was to compare energy expenditure with existing Recommended Nutrient Intakes for Canadians (RNIC) and determine whether the RNIC provides a true index of energy requirement in middle-aged and elderly Canadian women. A second objective was to compare energy expenditure and the RNIC to Food and Agriculture Organization, World Health Organization, United Nations University (FAO/WHO/UNU) predictions. Seventy-six women were recruited for the study (67.3 +/- 11.5 y, 63 +/- 11.7 kg, BMI 24.8 +/- 4.4 kg x m(-2)). The two-point doubly-labelled water (DLW) method was used over 13 days to assess energy expenditure while subjects carried out their routine activities. Subjects were stratified to enable age specific requirements for middle-aged and elderly women. At weight maintenance, energy needs were underestimated using the RNIC (7.1 +/- 1.6 MJ x d(-1), 1698 +/- 391 kcal x d(-1)) compared to total energy expenditure (10.0 +/- 3.2 MJ x d(-1), 2395 +/- 746 kcal x d(-1)) as determined by DLW as a whole and for each age group. The RNIC recommendations were lower than the FAO/WHO/UNU estimations even for light activity. Results indicate that mean energy expenditure was 29% greater than the RNIC recommendations created using formulas based on age and weight, whereas the FAO/WHO/ UNU estimations closely approximated energy expenditure based on heavy activity in women 49-79 y and light activity in women over 80 y old. These data suggest a systematic underestimation of Canadian energy recommendations for women.  相似文献   

15.
Because the effect of exercise on leptin was not established, we controlled energy intake (I) and exercise energy expenditure (E) to distinguish the independent effects of energy availability (A = I - E) and exercise stress (everything associated with exercise except its energy cost) on the diurnal leptin rhythm in healthy young women. In random order, we set A = 45 and 10 kcal. kg lean body mass(-1) (LBM) x day(-1) for 4 days during the early follicular phase of separate menstrual cycles in sedentary (S, n = 7) and exercising (X, n = 9: E = 30 kcal x kg LBM(-1) x day(-1)) women. Low energy availability suppressed the 24-h mean (P < 10(-6)) and amplitude (P < 10(-5)), whereas exercise stress did not (both P > 0.2). Suppressions of the 24-h mean (-72 +/- 3 vs. -53 +/- 3%, P < 0.001) and amplitude (-85 +/- 3 vs. -58 +/- 6%, P < 0.001) were more extreme in S vs. X than previously reported effects on luteinizing hormone pulsatility and carbohydrate availability. Thus the diurnal rhythm of leptin depends on energy, or carbohydrate, availability, not intake, and exercise has no suppressive effect on the diurnal rhythm of leptin beyond the impact of its energy cost on energy availability.  相似文献   

16.
The fasting metabolism of 71- to 235-d-old subantarctic fur seal (Arctocephalus tropicalis) pups from Amsterdam Island, southern Indian Ocean, was investigated during the long foraging trips of their mothers. Body lipid reserves were proportionally greater in female than male pups and higher in postmoult (37%) than premoult (10%) animals. The mass-specific rate of mass loss did not differ between the sexes but was lower than observed in other species. Daily mass loss was estimated to 56% fat, 10% protein, and 34% water. The rate of protein catabolism (15 g d(-1)) was negatively related to the size of initial lipid stores and accounted for 9% (+/-1%) of total energy expenditure. However, body composition changes during the fast were not equal between the sexes, with females relying more on protein catabolism than males (11% and 5% of total energy expenditure, respectively). Energy expenditure (270 kJ kg(-1) d(-1)) and metabolic water production (11.5 mL kg(-1) d(-1)) rates are the lowest reported for an otariid species. These results suggest that subantarctic fur seal pups greatly reduce activity levels to lower energy expenditure in addition to adopting protein-sparing metabolic pathways in order to survive the extreme fasts they must endure on Amsterdam Island.  相似文献   

17.
The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g., lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise is limited. A randomized controlled trial was performed in healthy, sedentary, moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous sedentary control group, 21 to a moderate-exercise (MOD; 300 kcal/day), and 22 to a high-exercise (HIGH; 600 kcal/day) group for 13 wk, corresponding to ~30 and 60 min of daily aerobic exercise, respectively. Body weight (MOD: -3.6 kg, P < 0.001; HIGH: -2.7 kg, P = 0.01) and fat mass (MOD: -4.0 kg, P < 0.001 and HIGH: -3.8 kg, P < 0.001) decreased similarly in both exercise groups. Although the exercise-induced energy expenditure in HIGH was twice that of MOD, the resulting accumulated energy balance, calculated from changes in body composition, was not different (MOD: -39.6 Mcal, HIGH: -34.3 Mcal, not significant). Energy balance was 83% more negative than expected in MOD, while it was 20% less negative than expected in HIGH. No statistically significant changes were found in energy intake or nonexercise physical activity that could explain the different compensatory responses associated with 30 vs. 60 min of daily aerobic exercise. In conclusion, a similar body fat loss was obtained regardless of exercise dose. A moderate dose of exercise induced a markedly greater than expected negative energy balance, while a higher dose induced a small but quantifiable degree of compensation.  相似文献   

18.
Rats offered chow, lard, and 30% sucrose solution (choice) rapidly become obese. We tested metabolic disturbances in rats offered choice, chow+lard, or chow+30% sucrose solution [chow+liquid sucrose (LS)] and compared them with rats fed a composite 60% kcal fat, 7% sucrose diet [high-fat diet (HFD)], or a 10% kcal fat, 35% sucrose diet [low-fat diet (LFD)]. Choice rats had the highest energy intake, but HFD rats gained the most weight. After 23 days carcass fat was the same for choice, HFD, chow+lard, and chow+LS groups. Glucose clearance was the same for all groups during an intraperitoneal glucose tolerance test (GTT) on day 12, but fasting insulin was increased in choice, LFD fed, and chow+LS rats. By contrast, only choice and chow+LS rats were resistant to an intraperitoneal injection of 2 mg leptin/kg on day 17. In experiment 2 choice rats were insulin insensitive during an intraperitoneal GTT, but this was corrected in an oral GTT due to GLP-1 release. UCP-1 protein was increased in brown fat and inguinal white fat in choice rats, and this was associated with a significant increase in energy expenditure of choice rats during the dark period whether expenditure was expressed on a per animal or a metabolic body size basis. The increase in expenditure obviously was not great enough to prevent development of obesity. Further studies are required to determine the mechanistic basis of the rapid onset of leptin resistance in choice rats and how consumption of sucrose solution drives this process.  相似文献   

19.
We measured resting metabolic rate (RMR), daily energy expenditure (DEE) and metabolisable energy intake (MEI) in two breeds of dog during peak lactation to test whether litter size differences were a likely consequence of allometric variation in energetics. RMR of Labrador retrievers (30 kg, n=12) and miniature Schnauzers (6 kg, n=4) averaged 3437 and 1062 kJ/day, respectively. DEE of Labradors (n=6) and Schnauzers (n=4) averaged 9808 and 2619 kJ/day, respectively. MEI of Labradors (n=12) was 22448 kJ/day and of Schnauzers (n=7) was 5382 kJ/day. DEE of Labrador pups (2.13 kg, n=19) was 974 kJ/day and Schnauzers (0.89 kg, n=7) were 490 kJ/day. Although Labradors had higher MEIs than Schnauzers during peak lactation, there was no difference in mass-specific energy expenditure between the two breeds. Hence, it is unlikely that litter size variation is a likely consequence of differences in maternal energy expenditure. Individual offspring were relatively more costly for mothers of the smaller breed to produce. Therefore, litter size variations were consistent with the expectation that smaller offspring should be more costly for mothers, but not that smaller mothers should per se invest more resources in reproduction.  相似文献   

20.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号