首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In Gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these ‘self-sufficient’ pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.  相似文献   

2.
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these 'self-sufficient' pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.  相似文献   

3.
Streptococcus pyogenes is a human pathogen that causes various diseases. Numerous virulence factors secreted by S. pyogenes are involved in pathogenesis. The peroxide regulator (PerR) is associated with the peroxide resistance response and pathogenesis, but little is known about the regulation of the secretome involved in virulence. To investigate how PerR regulates the expression of the S. pyogenes secretome involved in virulence, a perR deficient mutant was used for comparative secretomic analysis with a wild-type strain. The conditioned medium containing secreted proteins of a wild-type strain and a perR deficient mutant at the stationary phase were collected for two-dimensional gel electrophoresis analysis, where protease inhibitors were applied to avoid the degradation of extracellular proteins. Differentially expressed protein spots were identified by liquid chromatography electrospray ionization tandem MS. More than 330 protein spots were detected on each gel. We identified 25 unique up-regulated proteins and 13 unique down-regulated proteins that were directly or indirectly controlled by the PerR regulator. Among these identified proteins, mitogen factor 3 (MF3), was selected to verify virulence and the expression of gene products. The data showed that MF3 protein levels in conditioned medium, as measured by immunoblot analysis, correlated well with protein levels determined by two-dimensional gel electrophoresis analysis. We also demonstrated that PerR bound to the promoter region of the mf3 gene. The result of an infection model showed that virulence was attenuated in the mf3 deficient mutant. Additional growth data of the wild-type strain and the mf3 deficient mutant suggested that MF3 played a role in digestion of exogenous DNA for promoting growth. To summarize, we conclude that PerR can positively regulate the expression of the secreted protein MF3 that contributes to the virulence in S. pyogenes. The analysis of the PerR-regulated secretome provided key information for the elucidation of the host-pathogen interactions and might assist in the development of potential chemotherapeutic strategies to prevent or treat streptococcal diseases.  相似文献   

4.
Proteins are released from cells by different secretory pathways. The secretory pathway via the ER-Golgi route - realized by a signal sequence - is referred to as “classical secretion”. In contrast, alternative secretory pathways were summarized as “unconventional protein secretion”. Until now, unconventional protein secretion was lacking attention due to the absence of detailed mechanistic insight and limited experimental access. However, there is a growing number of experimental data showing that a large proportion of secreted proteins is released by these alternative routes. Secretomics - the analysis of all secreted proteins of a cell population - offers the opportunity to gain more functional insight into unconventional protein secretion. Several pitfalls in secretome analysis starting with the analyzed cell model and sample preparation to data analysis have to be considered for detailed characterization of the secretome. Here, we highlight the investigation of secretomes by quantitative LC-MS/MS analysis and discuss pitfalls and opportunities in the characterization of unconventionally secreted proteins by secretome analysis.  相似文献   

5.
European community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) clone remains a striking pathogenic clone spreading in European and Mediterranean countries. Since analysis of the secretome produced from this clone by proteomics could provide a comprehensive picture of both core exoproteins as well as virulence factors, we applied two proteomic approaches, pre-fractionation of proteins on SDS-PAGE followed by in-gel trypsin digestion, and in-solution trypsin-digestion followed by off-line SCX fractionation, both of which were coupled with LC-MS/MS analyses. A total of 174 distinct proteins were identified with a high-confidence. Functional classification of these identified proteins resulted in16.09% of protein synthesis, 13.79% of virulence, 6.89% of toxin, and 17.24% of unknown function. Prediction of their cellular localizations revealed 18.39% in extracellular space, 36.20% in cytoplasm, 5.17% in cytoplasmic membranes, 6.89% in cell wall, 1.14% in multiple localizations, and 32.18% in unknown localization. Among them, 52% proteins were predicted to be secreted through signal peptide-independent pathways. Most notably, the expression of some proteins such as enterotoxins U and B were identified for the first time in this clone.  相似文献   

6.
Bacterial protein secretion is a highly orchestrated process that is essential for infection and virulence. Despite extensive efforts to predict or experimentally detect proteins that are secreted, the characterization of the bacterial secretome has remained challenging. A central event in protein secretion is the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein for secretion via the general secretory pathway, and the arylomycins are a class of natural products that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. Here, using an arylomycin derivative, along with two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identify 11 proteins whose secretion from stationary-phase Staphylococcus epidermidis is dependent on SPase activity, 9 of which are predicted to be translated with canonical N-terminal signal peptides. In addition, we find that the presence of extracellular domains of lipoteichoic acid synthase (LtaS) and the β-lactam response sensor BlaR1 in the medium is dependent on SPase activity, suggesting that they are cleaved at noncanonical sites within the protein. In all, the data define the proteins whose stationary-phase secretion depends on SPase and also suggest that the arylomycins should be valuable chemical biology tools for the study of protein secretion in a wide variety of different bacteria.  相似文献   

7.
Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.  相似文献   

8.
Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.  相似文献   

9.
Secretion of proteins by the general secretory pathway (GSP) is a two-step process requiring the Sec translocase in the inner membrane and a separate substrate-specific secretion apparatus for translocation across the outer membrane. Gram-negative bacteria with pathogenic potential use the GSP to deliver virulence factors into the extracellular environment for interaction with the host. Well-studied examples of virulence determinants using the GSP for secretion include extracellular toxins, pili, curli, autotransporters, and crystaline S-layers. This article reviews our current understanding of the GSP and discusses examples of terminal branches of the GSP which are utilized by factors implicated in bacterial virulence.  相似文献   

10.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

11.
Viral hemorrhagic fever is a clinical syndrome that poses serious global health threat. Among the causative agents, dengue virus (DV) has the highest incidence rate and its infection is the major cause of viral hemorrhagic fever in the world. Although the pathophysiological mechanisms of DV-induced diseases are not yet understood, it is well accepted that liver is a site of viral replication. In this study, we used proteomics to analyze infection of a hepatic cell lineage, HepG2, with DV, focusing on the secreted proteins. 1D-electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were used, allowing the identification of a total of 107 proteins, among which 35 were found only in control secretome and 24 only in infected cells secretome. To validate these data, we performed 2D-eletrophoresis followed by MALDI-TOF/TOF, resulting in the identification of 20 proteins, 8 of them confirming LC-MS/MS results. We discuss the results obtained taking into account the proteins previously described in the secretome of HepG2 cells, proteins present in human plasma and proteins of interest for dengue pathogenesis. Altogether the data presented here provide clues for the progress in the understanding of the role of liver secretion in the progression of the disease.  相似文献   

12.
Porphyromonas gingivalis is a major etiological agent of periodontal diseases and the outer membrane vesicles (OMVs) contain virulence factors such as LPS and gingipains. In this study, we investigated the potential role of the OMVs in host immune response and tissue destruction during P. gingivalis infection. Firstly, we found that sera from periodontitis patients had significantly stronger reactivity against an OMV-producing wild type strain than the isogenic OMV-depleted strain. OMVs were found to be highly antigenic, as absorption of patient sera with OMVs greatly reduced reactivity with whole cells of P. gingivalis. LC-MS/MS analysis of OMVs revealed multiple forms of gingipains and several gingipain-related proteins. Western blots of OMVs using patient sera revealed a conserved immunoreactive antigen profile resembling the profile of OMV antigens that were recognized by gingipain antiserum, suggesting a potential role of OMV-associated gingipains in triggering antibody-mediated immune responses to P. gingivalis infection. When OMVs were added to a monolayer of an oral squamous epithelial cell line, OMVs caused cell detachment, which was inhibited by preincubating OMVs with anti-gingipain antiserum. These data suggest that gingipain-laden OMVs may contribute to tissue destruction in periodontal diseases by serving as a vehicle for the antigens and active proteases.  相似文献   

13.
Proteins secreted (the secretome) from cancer cells are potentially useful as biomarkers of the disease. Using LC-MS/MS, the secreted proteomes from a series of isogenic breast cancer cell lines varying in aggressiveness were analyzed by mass spectrometry: nontumorigenic MCF10A, premalignant/tumorigenic MCF10AT, tumorigenic/locally invasive MCF10 DCIS.com, and tumorigenic/metastatic MCF 10CA cl. D. Proteomes were obtained from conditioned serum-free media, partially fractionated using a small reverse phase C2 column, and digested with trypsin for analysis by LC-MS/MS, using a method previously shown to give highly enriched secreted proteomes (Mbeunkui et al. J. Proteome Res. 2006, 5, 899-906). The search files produced from five analyses (three separate preparations) were combined for database searching (Mascot) which produced a list of over 250 proteins from each cell line. The aim was to discover highly secreted proteins which changed significantly in abundance corresponding with aggressiveness. The most apparent changes were observed for alpha-1-antichymotrypsin and galectin-3-binding protein which were highly secreted proteins from MCF10 DCIS.com and MCF10CA cl. D, yet undetected in the MCF10A and MCF10AT cell lines. Other proteins showing increasing abundance in the more aggressive cell lines included alpha-1-antitrypsin, cathepsin D, and lysyl oxidase. The S100 proteins, often associated with metastasis, showed variable changes in abundance. While the cytosolic proteins were low (e.g., actin and tubulin), there was significant secretion of proteins often associated with the cytoplasm. These proteins were all predicted as products of nonclassical secretion (SecretomeP, Center for Biological Sequence Analysis). The LC-MS/MS results were verified for five selected proteins by western blot analysis, and the relevance of other significant proteins is discussed. Comparisons with two other aggressive breast cancer cell lines are included. The protein with consistent association with aggressiveness in all lines, and in unrelated cancer cells, was the galectin-3-binding protein which has been associated with breast, prostate, and colon cancer earlier, supporting the approach and findings. This analysis of an isogenic series of cell lines suggests the potential usefulness of the secretome for identifying prospective markers for the early detection and aggressiveness/progression of cancer.  相似文献   

14.
Acinetobacter baumannii causes severe infections in compromised patients. We combined SDS-PAGE, two-dimensional gel electrophoresis and mass spectrometry (LC-MS/MS and MALDI-TOF) to separate and characterize the proteins of the cell envelope of this bacterium. In total, 135 proteins (inner and outer membrane proteins) were identified. In this analysis, we described the expression by this bacterium of RND-type efflux systems and some potential virulence factors. We then compared the membrane subproteome of a clinical multidrug-resistant (MDR) isolate with that of a reference strain. We found that the MDR strain expressed lower levels of the penicillin-binding-protein 1b, produced a CarO protein having different primary and quaternary structures to that of the reference strain, and expressed OmpW isoforms. We also showed that the clinical strain has a high ability to form biofilms consistent with the accumulation of some outer membrane proteins (OMPs) such as NlpE or CsuD that have already been described as involved in bacterial adhesion. These features may partly explain the MDR emergence of the clinical isolate.  相似文献   

15.
Gram-negative bacteria contain multiple secretion pathways that facilitate the translocation of proteins across the outer membrane. The two-partner secretion (TPS) system is composed of two essential components, a secreted exoprotein and a pore-forming beta barrel protein that is thought to transport the exoprotein across the outer membrane. A putative TPS system was previously described in the annotation of the genome of Escherichia coli O157:H7 strain EDL933. We found that the two components of this system, which we designate OtpA and OtpB, are not predicted to belong to either of the two major subtypes of TPS systems (hemolysins and adhesins) based on their sequences. Nevertheless, we obtained direct evidence that OtpA and OtpB constitute a bona fide TPS system. We found that secretion of OtpA into the extracellular environment in E. coli O157:H7 requires OtpB and that when OtpA was produced in an E. coli K-12 strain, its secretion was strictly dependent on the production of OtpB. Furthermore, using OtpA/OtpB as a model system, we show that protein secretion via the TPS pathway is extremely rapid.  相似文献   

16.
The secretome of an organism is defined as a set of secreted proteins that encompasses all proteins exported to the extracellular space. To better understand the chickpea secretome, we used callus culture to isolate and identify secreted proteins as a step toward determining their functions. Proteins in the extracellular media of the suspension culture were examined using SDS-PAGE and mass spectrometry (LC-MS/MS). Proteomic analysis led to the identification of 773 proteins, presumably involved in a variety of functions including metabolism, signal transduction, transport, and cell defense, in addition to maintaining redox status of extracellular space. Bioinformatic analysis confirmed 724 proteins, accounting for 94% of the identified proteins, as constituents of the secretome. Analysis of the secretome revealed the presence of several proteins of unknown function and a large number of classical and nonclassical secreted proteins. This represents the first comprehensive secretome of a legume genome, which is yet to be sequenced. Comparative analysis of the chickpea secretome with those of Medicago, Arabidopsis, and rice revealed that the majority of identified proteins are seemingly species-specific. This study demonstrates that characterization of the chickpea secretome in vitro can be used to identify secreted proteins, which has implications for systems biology research.  相似文献   

17.
In plants, potential pathogenic bacteria do not enter the host cell. Therefore, a large portion of the molecular interaction between microbial pathogen and host occurs in the extracellular space. To investigate potential mechanisms of disease resistance and susceptibility, we analyzed changes in the extracellular proteome, or secretome, using the Arabidopsis-Pseudomonas syringae pathosystem. This system provides the possibility to directly compare interactions resulting in basal resistance, susceptibility, and gene-specific resistance by using different genotypes of Pseudomonas on the same host. After infecting suspension-cultured cells of Arabidopsis with the Pseudomonas strain of interest, we isolated protein from the cell culture medium representing the secretome. After one-dimensional gel separation and in-gel digestion of proteins, we used iTRAQ (isobaric tags for relative and absolute quantitation) labeling in conjunction with LC-MS/MS to perform relative quantitative comparisons of the secretomes from each of these interactions. We obtained quantitative information from 45 Arabidopsis proteins that were present in all three biological experiments. We observed complex patterns of accumulation, ranging from proteins that decreased in abundance in the presence of all three bacterial strains to proteins that specifically increased or decreased during only one of the interactions. A particularly intriguing result was that the virulent bacteria (e.g. a susceptible interaction) caused the extracellular accumulation of a specific subset of host proteins lacking traditional signal peptides. These results indicate that the pathogen may manipulate host secretion to promote the successful invasion of plants.  相似文献   

18.
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.  相似文献   

19.
20.
Activation of bacterial virulence-associated type III secretion systems (T3SSs) requires direct contact between a bacterium and a eukaryotic cell. In Yersinia pestis, the cytosolic LcrG protein and a cytosolic YopN-TyeA complex function to block T3S in the presence of extracellular calcium and prior to contact with a eukaryotic cell. The mechanism by which the bacterium senses extracellular calcium and/or cell contact and transmits these signals to the cytosolic compartment is unknown. We report here that YscF, a small protein that polymerizes to form the external needle of the T3SS, is essential for the calcium-dependent regulation of T3S. Alanine-scanning mutagenesis was used to identify YscF mutants that secrete virulence proteins in the presence and absence of calcium and prior to contact with a eukaryotic cell. Interestingly, one of the YscF mutants that exhibited constitutive T3S was unable to translocate secreted proteins across the eukaryotic plasma membrane. These data indicate that the YscF needle is a multifunctional structure that participates in virulence protein secretion, in translocation of virulence proteins across eukaryotic membranes and in the cell contact- and calcium-dependent regulation of T3S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号