共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang Wang Rebecca Mercier Tom C. Hobman Paul LaPointe 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2013,1833(12):2673-2681
RNAi is a highly conserved mechanism in almost every eukaryote with a few exceptions including the model organism Saccharomyces cerevisiae. A recent study showed that the introduction of the two core components of canonical RNAi systems, Argonaute and Dicer, from another budding yeast, Saccharomyces castellii, restores RNAi in S. cerevisiae. We report here that a functional RNAi system can be reconstituted in yeast with the introduction of only S. castellii Dicer and human Argonaute2. Interestingly, whether or not TRBP2 was present, human Dicer was unable to restore RNAi with either S. castellii or human Argonaute. Contrary to previous reports, we find that human Dicer, TRBP2 and Argonaute2 are not sufficient to reconstitute RNAi in yeast when bona fide RNAi precursors are co-expressed. We and others have previously reported that Hsp90 regulates conformational changes in human and Drosophila Argonautes required to accommodate the loading of dsRNA duplexes. Here we show that the activities of both human and S. castellii Argonaute are subject to Hsp90 regulation in S. cerevisiae. In summary, our results suggest that regulation of the RNAi machinery by Hsp90 may have evolved at the same time as ancestral RNAi. 相似文献
2.
CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. 总被引:15,自引:0,他引:15
R Rankin R Pontarollo X Ioannou A M Krieg R Hecker L A Babiuk S van Drunen Littel-van den Hurk 《Antisense & nucleic acid drug development》2001,11(5):333-340
Oligodinucleotides containing CpG motifs stimulate vertebrate immune cells in vitro, have proven efficacy in murine disease models and are currently being tested in human clinical trials as therapies for cancer, allergy, and infectious disease. As there are no known immunostimulatory motifs for veterinary species, the potential of CpG DNA as a veterinary pharmaceutical has not been investigated. Here, optimal CpG motifs for seven veterinary and three laboratory species are described. The preferential recognition of a GTCGTT motif was strongly conserved across two vertebrate phyla, although a GACGTT motif was optimal for inbred strains of mice and rabbits. In a subsequent adjuvanticity trial, the in vitro screening methodology was validated in sheep, representing the first demonstration of CpG DNA efficacy in a veterinary species. These results should provide candidate immunostimulant and therapeutic drugs for veterinary use and enable the testing of CpG DNA in large animal models of human disease. 相似文献
3.
Previously, the C-terminal fragment of a split intein was known to undergo controllable C-cleavage at its C-terminus only when the N-terminal fragment of the intein was added. Here we constructed a similar split intein from the Ssp DnaX intein, but we unexpectedly observed that its C-terminal 136-aa fragment could undergo spontaneous C-cleavage without the N-terminal fragment that was up to 15 aa long and contained the conserved intein motif A. This C-cleavage activity was significantly decreased by a mutation of the conserved Thr residue in the conserved intein motif B. These findings suggest a robust intein structure in the absence of motif A and a larger role of motif B in the third step of the protein splicing mechanism. 相似文献
4.
《Journal of thermal biology》2005,30(1):43-49
In this present study, we show that 3HK induced reactive oxygen species (ROS) accumulation and after caspase activation lead to apoptotic cell death. Pretreatment with N-acetylcysteine (NAC), an effective antioxidant, significantly attenuated 3HK-induced apoptosis by way of a reduction of ROS accumulation and caspase activity. SKN-SN cells were protected from 3HK-induced cytotoxicity by heat shock protein (HSP). HSP effectively attenuated 3HK-mediated ROS accumulation and apoptosis. In addition, the protective effect of HSP90 was abolished by pretreatment with HSP90 anti-sense oligonucleotides, but not when pretreated with anti-senses for other HSPs. These results suggest that HSP90 protects SKN-SH cells from 3HK-induced cytotoxicity by reducing ROS levels and caspase activity. 相似文献
5.
Picard D 《Experimental cell research》2006,312(2):198-204
p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the "fluorescence recovery after photobleaching" (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions. 相似文献
6.
Yuval Samuni Hisanari Ishii Fuminori Hyodo Uri Samuni Murali C. Krishna Sara Goldstein James B. Mitchell 《Free radical biology & medicine》2010,48(11):1559-1563
Geldanamycin (GM), a benzoquinone ansamycin antibiotic, is a natural product inhibitor of Hsp90 with potent and broad anti-cancer properties. Because of its adverse effects on liver, its less toxic derivatives 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) are currently being evaluated for the treatment of cancer. Previously, it has been demonstrated that the redox cycling of GM by NADPH-cytochrome P450 reductase leads to the formation of the GM semiquinone and superoxide radicals, the latter being identified using spin-trapping. We hypothesized that the different hepatotoxicity induced by GM, 17-AAG and 17-DMAG reflects the redox active properties of the quinone moiety and possibly the extent of superoxide formation, which may stimulate cellular oxidative injury. Our data demonstrate that superoxide can be efficiently trapped during the reduction of GM, 17-AAG and 17-DMAG by NADPH-cytochrome P450 reductase, and that superoxide formation rate followed the order 17-DMAG > 17-AAG > GM. In the absence of superoxide scavengers, the rate of NADPH oxidation followed the order 17-DMAG > GM > 17-AAG. The half-wave one-electron reduction potentials (E1/2) of GM, 17-AAG and 17-DMAG in DMSO have been determined to be -0.37, -0.13 and -0.015 V (vs. Ag/AgCl), respectively. If the same order of E1/2 follows in neutral aqueous media, thermodynamic considerations imply that 17-DMAG is more readily reduced by the P450 reductase as well as by superoxide. The order of the drug cytotoxicity toward rat primary hepatocytes, as determined by their effect on cell viability and on intracellular oxidant level, was opposite to the order of E1/2 of the respective quinone/semiquinone couples. These results suggest that hepatotoxicity exhibited by the Hsp90 inhibitors belonging to benzoquinone ansamycins could be attributed to superoxide. The apparent discrepancy between the order of toxicity and the orders of superoxide formation rate, which is correlated with E1/2, is discussed. 相似文献
7.
The Rab-specific alphaGDP-dissociation inhibitor (alphaGDI) regulates the recycling of Rab GTPases. We have now identified a novel alphaGDI complex from synaptic membranes that contains three chaperone components: Hsp90, Hsc70 and cysteine string protein (CSP). We find that the alphaGDI-chaperone complex is dissociated in response to Ca(2+)-induced neurotransmitter release, that chaperone complex dissociation is sensitive to the Hsp90 inhibitor geldanamycin (GA) and that GA inhibits the ability of alphaGDI to recycle Rab3A during neurotransmitter release. We propose that alphaGDI interacts with a specialized membrane-associated Rab recycling Hsp90 chaperone system on the vesicle membrane to coordinate the Ca(2+)-dependent events triggering Rab-GTP hydrolysis with retrieval of Rab-GDP to the cytosol. 相似文献
8.
9.
Circadian rhythms play a central role in diverse physiological phenomena and the recent years have witnessed the identification of a number of genes responsible for the maintenance of these rhythms. One of these is the Clock gene, which was first identified in mouse and subsequently in a large number of organisms, including humans. The human Clock gene has been proposed as a possible candidate for disorders affected by alterations of circadian rhythm, including bipolar disorder and schizophrenia. This gene contains a highly conserved polyglutamine motif, that in humans is coded for by CAG repeats. In view of the involvement of CAG repeat expansion in a number of neuro-psychiatric disorders, we have sought to determine the polymorphism status of CAG repeats at the Clock locus in humans. Our analysis of 190 unrelated individuals, who included patients suffering from bipolar disorder and schizophrenia, indicated that the repeat, which consisted of 6 CAG triplets, was not polymorphic in humans. An analysis of the repeat in non-human primates and other organisms revealed that the glutamine stretch is shortest in humans and baboons, and longest in Drosophila and zebrafish. A study of various Drosophila species revealed that the repeat number is highly polymorphic, ranging from 25 to 33 pure glutamine repeats. Unlike most other microsatellites, the CAG repeat stretch at the Clock locus in humans is smaller than its homologues in non-human primates. We propose that glutamine repeat size is functionally important in this gene and thus tightly regulated. The variation in repeat number is probably deleterious to the individual, resulting in the maintenance of a short and invariable repeat structure in the human population. 相似文献
10.
McMahon HE Mangé A Nishida N Créminon C Casanova D Lehmann S 《The Journal of biological chemistry》2001,276(3):2286-2291
Relatively limited information is available on the processing and function of the normal cellular prion protein, PrP(C). Here it is reported for the first time that PrP(C) undergoes a site-specific cleavage of the octapeptide repeat region of the amino terminus on exposure to reactive oxygen species. This cleavage was both copper- and pH-dependent and was retarded by the presence of other divalent metal ions. The oxidative state of the cell also decreased detection of full-length PrP(C) and increased detection of amino-terminally fragmented PrP(C) within cells. Such a post-translational modification has vast implications for PrP(C), in its processing, because such cleavage could alter further proteolysis, and in the formation of the scrapie isoform of the prion protein, PrP(Sc), because abnormal cleavage of PrP(Sc) occurs into the octapeptide repeat region. 相似文献
11.
Seung Baek Lee Jung Jin Kim Tae Woo Kim Byung Soo Kim Myeong-Sok Lee Young Do Yoo 《Apoptosis : an international journal on programmed cell death》2010,15(2):204-218
Serum deprivation-triggered increases in reactive oxygen species (ROS) are known to induce apoptotic cell death. However,
the mechanism by which serum deprivation causes ROS production is not known. Since mitochondria are the main source of ROS
and since mitochondrial ROS modulator 1 (Romo1) is involved in ROS production, we sought to determine if serum deprivation
triggered ROS production through Romo1. To examine the relationship between Romo1 and the serum deprivation-triggered increase
in ROS, we transfected Romo1 siRNA into various cell lines and looked for inhibition of mitochondrial ROS generation. Romo1 knockdown by Romo1 siRNA blocked the mitochondrial ROS production caused by serum deprivation, which originates in the mitochondrial electron
transport chain. We also found that Romo1 knockdown inhibited serum deprivation-induced apoptosis. These findings suggest
that Romo1-derived ROS play an important role in apoptotic cell death triggered by withdrawal of cell survival factors. 相似文献
12.
Signal transduction by reactive oxygen species 总被引:4,自引:0,他引:4
Finkel T 《The Journal of cell biology》2011,194(1):7-15
Although historically viewed as purely harmful, recent evidence suggests that reactive oxygen species (ROS) function as important physiological regulators of intracellular signaling pathways. The specific effects of ROS are modulated in large part through the covalent modification of specific cysteine residues found within redox-sensitive target proteins. Oxidation of these specific and reactive cysteine residues in turn can lead to the reversible modification of enzymatic activity. Emerging evidence suggests that ROS regulate diverse physiological parameters ranging from the response to growth factor stimulation to the generation of the inflammatory response, and that dysregulated ROS signaling may contribute to a host of human diseases. 相似文献
13.
Tae-Hee Kim Woo Duck Seo Hyung Won Ryu Haeng Ran Seo Yeung Bae Jin Minyoung Lee Young-Hoon Ji Ki Hun Park Yun-Sil Lee 《Chemico-biological interactions》2010,188(1):111-118
Overexpression of c-Myc represents the most frequently deregulated genetic event in cancer, and therefore c-Myc may represent a good molecular target for cancer therapy. The human lung carcinoma cell line, NCI-H1299, shows resistance to conventional cancer treatments, such as ionizing radiation (IR) and cisplatin, while the lung carcinoma cell line, NCI-H460, is sensitive to treatment with these agents. However, when treated with a chalcone compound [toluenesulfonylamido-chalcone, 4′-(p-toluene sulfonyl amino)-3,4-dihydroxy chalcone (TSHDC)], cell death was dramatically induced in NCI-H1299 cells as compared to NCI-H460 cells. TSHDC-mediated cytotoxicity was not dependent on the status of p53 and p21. However, TSHDC exerted increased c-Myc-dependent reactive oxygen species (ROS) production in NCI-H1299 cells in which c-Myc is overexpressed, while increased ROS production did not occur in A549 or NCI-H460 cells with a low c-Myc level. Several colon and brain cancer cells also showed a correlation between c-Myc expression and TSHDC-mediated increased cell death. Tumor regression by TSHDC was more dramatic in NCI-H1299 cells than NCI-H460 cells, when these cells were grafted to nude mice. However, in the case of IR and cisplatin, NCI-H460 cells were more sensitive than NCI-H1299 cells. From these results, c-Myc-mediated ROS production may be a good target for screening of novel cancer drugs and TSHDC might be a good candidate as a cancer drug, specifically in cancer cells that overexpress c-Myc. 相似文献
14.
Lee DW Selamoglu N Lanciano P Cooley JW Forquer I Kramer DM Daldal F 《The Journal of biological chemistry》2011,286(20):18139-18148
Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases. 相似文献
15.
The Saccharomyces cerevisiae HSP31 (YDR533c) gene encodes a protein that belongs to the DJ-1/PfpI family and its function is unknown. Homologs to Hsp31p polypeptide can be found in organisms from all systematic groups of eukaryotes and prokaryotes, and the functions of the vast majority of them are also hypothetical. One of the homologs is human protein DJ-1. Various amino acid substitutions within this protein correlate with early onset hereditary Parkinson's disease. The deletion of the HSP31 gene displays no apparent phenotype under standard growth conditions, but a thorough functional analysis of S. cerevisiae revealed that its absence makes the cells sensitive to a subset of reactive oxygen species (ROS) generators. HSP31 is induced under conditions of oxidative stress in a YAP1-dependent manner. Similar to other stress response genes, it is also induced in the postdiauxic phase of growth and this induction is YAP1-independent. The patterns of sensitivities to various ROS generators of the hsp31Delta strain and the strain with the deletion of SOD1, another gene defending the cell against ROS, are different. We postulate that Hsp31p protects the cell against oxidative stress and complements other stress protection systems within the cell. 相似文献
16.
线粒体电子传递链电子漏的化学发光测定 总被引:2,自引:0,他引:2
本实验用差速离心法分离正常大鼠肝脏和心肌线粒体 ,以lucigenin (探测超氧阴离子 )与luminol (探测过氧化氢 )为探剂 ,用化学发光法测定METC电子漏的生成。在反应体系中加入外源底物 ,其发光强度明显高于空白对照 (体系中无线粒体 )。在肝线粒体体系中 ,无论是lucigenin还是luminol诱发的发光 ,琥珀酸底物引起的发光强均要高于丙酮酸 /苹果酸引起的发光强度。在心肌线粒体 luminol体系中也有与肝线粒体相似的结果 ,在心肌线粒体 lucigenin体系中 ,加入外源底物丙酮酸 /苹果酸诱发的发光强度高于琥珀酸诱发的发光强度 相似文献
17.
The TEA domain: a novel, highly conserved DNA-binding motif 总被引:16,自引:0,他引:16
T R Bürglin 《Cell》1991,66(1):11-12
18.
The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells. 相似文献
19.
Kabir AM Clark JE Tanno M Cao X Hothersall JS Dashnyam S Gorog DA Bellahcene M Shattock MJ Marber MS 《American journal of physiology. Heart and circulatory physiology》2006,291(4):H1893-H1899
To examine whether cardioprotection initiated by reactive oxygen species (ROS) is dependent on protein kinase Cepsilon (PKCepsilon), isolated buffer-perfused mouse hearts were randomized to four groups: 1) antimycin A (AA) (0.1 microg/ml) for 3 min followed by 10 min washout and then 30 min global ischemia (I) and 2 h reperfusion (R); 2) controls of I/R alone; 3) AA bracketed with 13 min of N-2-mercaptopropionyl- glycine (MPG) followed by I/R; and 4) MPG (200 microM) alone, followed by I/R. Isolated adult rat ventricular myocytes (ARVM) were exposed to AA (0.1 microg/ml), and lucigenin was used to measure ROS production. Murine hearts and ARVM were exposed to AA (0.1 microg/ml) with or without MPG, and PKCepsilon translocation was measured by cell fractionation and subsequent Western blot analysis. Finally, the dependence of AA protection on PKCepsilon was determined by the use of knockout mice (-/-) lacking PKCepsilon. AA exposure caused ROS production, which was abolished by the mitochondrial uncoupler mesoxalonitrile 4-trifluoromethoxyphenylhydrazone. In addition, AA significantly reduced the percent infarction-left ventricular volume compared with control I/R (26 +/- 4 vs. 43 +/- 2%; P < 0.05). Bracketing AA with MPG caused a loss of protection (52 +/- 7 vs. 26 +/- 4%; P < 0.05). AA caused PKCepsilon translocation only in the absence of MPG, and protection was lost on the pkcepsilon(-/-) background (38 +/- 3 vs. 15 +/- 4%; P < 0.001). AA causes ROS production, on which protection and PKCepsilon translocation depend. In addition, protection is absent in PKCepsilon null hearts. Our results imply that, in common with ischemic preconditioning, PKCepsilon is crucial to ROS-mediated protection. 相似文献
20.
The Swi2/Snf2-related protein Rad54 is a chromatin remodeling enzyme that is important for homologous strand pairing catalyzed by the eukaryotic recombinase Rad51. The chromatin remodeling and DNA-stimulated ATPase activities of Rad54 are significantly enhanced by Rad51. To investigate the functions of Rad54, we generated and analyzed a series of mutant Rad54 proteins. Notably, the deletion of an N-terminal motif (amino acid residues 2-9), which is identical in Rad54 in Drosophila, mice, and humans, results in a complete loss of chromatin remodeling and strand pairing activities, and partial inhibition of the ATPase activity. In contrast, this conserved N-terminal motif has no apparent effect on the ability of DNA to stimulate the ATPase activity or of Rad51 to enhance the DNA-stimulated ATPase activity. Unexpectedly, as the N terminus of Rad54 is progressively truncated, the mutant proteins regain partial chromatin remodeling activity as well as essentially complete DNA-stimulated ATPase activity, both of which are no longer responsive to Rad51. These findings suggest that the N-terminal region of Rad54 contains an autoinhibitory activity that is relieved by Rad51. 相似文献