首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that topological constraints encoded at the RNA secondary structure level involving basic steric and stereochemical forces can significantly restrict the orientations sampled by helices across two-way RNA junctions. Here, we formulate these topological constraints in greater quantitative detail and use this topological framework to rationalize long-standing but poorly understood observations regarding the basic behavior of RNA two-way junctions. Notably, we show that the asymmetric nature of the A-form helix and the finite length of a bulge provide a physical basis for the experimentally observed directionality and bulge-length amplitude dependence of bulge induced inter-helical bends. We also find that the topologically allowed space can be modulated by variations in sequence, particularly with the addition of non-canonical GU base pairs at the junction, and, surprisingly, by the length of the 5' and 3' helices. A survey of two-way RNA junctions in the protein data bank confirms that junction residues have a strong preference to adopt looped-in, non-canonically base-paired conformations, providing a route for extending our bulge-directed framework to internal loop motifs and implying a simplified link between secondary and tertiary structure. Finally, our results uncover a new simple mechanism for coupling junction-induced topological constraints with tertiary interactions.  相似文献   

2.
RNA junctions are common secondary structural elements present in a wide range of RNA species. They play crucial roles in directing the overall folding of RNA molecules as well as in a variety of biological functions. In particular, there has been great interest in the dynamics of RNA junctions, including conformational pathways of fully base-paired 4-way (4H) RNA junctions. In such constructs, all nucleotides participate in one of the four double-stranded stem regions, with no connecting loops. Dynamical aspects of these 4H RNAs are interesting because frequent interchanges between parallel and antiparallel conformations are thought to occur without binding of other factors. Gel electrophoresis and single-molecule fluorescence resonance energy transfer experiments have suggested two possible pathways: one involves a helical rearrangement via disruption of coaxial stacking, and the other occurs by a rotation between the helical axes of coaxially stacked conformers. Employing molecular dynamics simulations, we explore this conformational variability in a 4H junction derived from domain 3 of the foot-and-mouth disease virus internal ribosome entry site (IRES); this junction contains highly conserved motifs for RNA-RNA and RNA-protein interactions, important for IRES activity. Our simulations capture transitions of the 4H junction between parallel and antiparallel conformations. The interconversion is virtually barrier-free and occurs via a rotation between the axes of coaxially stacked helices with a transient perpendicular intermediate. We characterize this transition, with various interhelical orientations, by pseudodihedral angle and interhelical distance measures. The high flexibility of the junction, as also demonstrated experimentally, is suitable for IRES activity. Because foot-and-mouth disease virus IRES structure depends on long-range interactions involving domain 3, the perpendicular intermediate, which maintains coaxial stacking of helices and thereby consensus primary and secondary structure information, may be beneficial for guiding the overall organization of the RNA system in domain 3.  相似文献   

3.
The hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA drives internal initiation of viral protein synthesis during host cell infection. In the tertiary structure of the IRES RNA, two helical junctions create recognition sites for direct binding of the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). The 2.8 A resolution structure of the IIIabc four-way junction, which is critical for binding eIF3, reveals how junction nucleotides interact with an adjacent helix to position regions directly involved in eIF3 recognition. Two of the emergent helices stack to form a nearly continuous A-form duplex, while stacking of the other two helices is interrupted by the insertion of junction residues into the helix minor groove. This distorted stack probably serves as an important recognition surface for the translational machinery.  相似文献   

4.
We present a protocol for determining the relative orientation and dynamics of A-form helices in 13C/15N isotopically enriched RNA samples using NMR residual dipolar couplings (RDCs). Non-terminal Watson-Crick base pairs in helical stems are experimentally identified using NOE and trans-hydrogen bond connectivity and modeled using the idealized A-form helix geometry. RDCs measured in the partially aligned RNA are used to compute order tensors describing average alignment of each helix relative to the applied magnetic field. The order tensors are translated into Euler angles defining the average relative orientation of helices and order parameters describing the amplitude and asymmetry of interhelix motions. The protocol does not require complete resonance assignments and therefore can be implemented rapidly to RNAs much larger than those for which complete high-resolution NMR structure determination is feasible. The protocol is particularly valuable for exploring adaptive changes in RNA conformation that occur in response to biologically relevant signals. Following resonance assignments, the procedure is expected to take no more than 2 weeks of acquisition and data analysis time.  相似文献   

5.
The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.  相似文献   

6.
The 55-nt long RNA, modelling a three-way junction, with non-uniformly incorporated deuterated nucleotides has been synthesised in a pure form. The NMR-window part in this partially deuterated 55mer RNA consists of natural non-enriched nucleotide blocks at the three-way junction (shown in a square box in Fig. 2), whereas all other nucleotides of the rest of the molecule are partially deuterated (> 97 atom% 2H at C2', C3', C5', C5, and approximately 50 atom% 2H at C4'). The secondary structure of this 55mer RNA was determined by 2D 1H NOESY spectroscopy in D2O or in 10% D2O-H2O mixture. The use of deuterated building blocks in the specific region of the 55mer RNA allowed us to identify two distinct A-type RNA helices in a straightforward manner by observing connectivities of H1' with the basepaired imino and the aromatic H2 of all adenosine nucleotides as the first step for the determination of its tertiary structure in a cost- and time-effective manner without employing any 13C/15N labelling. These two decameric helices involve 40 nucleotides, for which all non-exchangeable H1', H6, H2, H8 and H5 protons (all 40 H1', all 40 H6 or H8 aromatics, all seven H2 of adenine nucleotide and all four non-deuterated H5 of cytosines) as well as all 16 exchangeable imino protons (with the exception of four terminal basepairs) and 16 amino protons of cytosines have been assigned. Since all aromatic-H2', H3' as well as H5'/5' crosspeaks from partially deuterated residues have been eliminated from the NMR spectra, the observation of natural nucleotide residues in the NMR window part has essentially been simplified. It has been found that the crosspeaks from the natural nucleotides located at the three-way junction in the NMR-window part show different degrees of line-broadening, thereby indicating that the various nucleotide residues have very different mobilities with respect to themselves as well as compared to other nucleotides in the helices. The assignment of H2' and H3' in the NMR-window part has been made based on NOESY and DQF-COSY crosspeaks. It is noteworthy that, even in this preliminary study, it has been possible to identify 10 H2' out of total 14 and 9 H3' out of 14. The data show that expanded AU containing a tract of 55mer RNA does not self-organise into a tight third helix, as the two decameric A-type helices, across the three-way junction which is evident from the absence of any additional imino protons, except those that already have been assigned for the two decameric helices.  相似文献   

7.
Asymmetric bulge loop motifs are widely dispersed in all types of functional RNAs. They are frequently occurring structural motifs in folded RNA structures and appear commonly in pre-microRNA and ribosomes, where they are involved in specific RNA–RNA and RNA–protein interactions. It is therefore necessary to understand such motifs from a structural point of view. We analyzed all available RNA structures and identified quite a few fragments of double helices that contain bulges. We found that these discontinuities often introduce kinks into the double helices, which also affects the stacking overlap between the base pairs across the irregularity. In order to understand the influence of these bulges on stability and flexibility, we carried out molecular dynamics simulations of three different single-residue bulge-containing RNA helices using the CHARMM36 force field. The structural variability at the junctions of RNA bulges is expected to differ from that in continuous double-helical stretches. The structural features of the junction region were observed to vary noticeably depending on the orientation of the bulge residue. When the base of the bulge residue is looped out, the RNA stretch behaves like a standard long A-form RNA double helix, whereas the entire RNA behaves differently when the base of the bulge residue is intercalated between base pairs inside the RNA stem. Such single-base intercalation was found to introduce a permanent kink into the composite double helix, which could be a recognition element for Dicer during the maturation of miRNA.  相似文献   

8.
The RNA pseudoknot located at the 5' end of the gene 32 messenger RNA of bacteriophage T2 contains two A-form helical stems connected by two loops, in an H-type pseudoknot topology. A combination of multidimensional NMR methods and isotope labeling were used to investigate the pseudoknot structure, resulting in a more detailed structural model than provided by earlier homonuclear NMR studies. Of particular significance, the interface between the stacked helical stems within the pseudoknot motif is described in detail. The two stems are stacked in a coaxial manner, with an approximately 18 degrees rotation of stem1 relative to stem2 about an axis that is parallel to the helical axis. This rotation serves to relieve what would otherwise be a relatively close phosphate-phosphate contact at the junction of the two stems, while preserving the stabilizing effects of base stacking. The ability of the NMR data to determine pseudoknot bending was critically assessed. The data were found to be a modestly precise indicator of pseudoknot bending, with the angle between the helical axes of stem1 and stem2 being in the range of 15+/-15 degrees. Pseudoknot models with bend angles within this range are equally consistent with the data, since they differ by only small amounts in the relatively short-range interproton distances from which the structure was derived. The gene 32 messenger RNA pseudoknot was compared with other RNA structures with coaxial or near-coaxial stacked helical stems.  相似文献   

9.
A C Wang  S G Kim  P F Flynn  S H Chou  J Orban  B R Reid 《Biochemistry》1992,31(16):3940-3946
Nuclear magnetic resonance experiments reveal that the base H8/H6 protons of oligoribonucleotides (RNA) have T1 relaxation times that are distinctly longer than those of oligodeoxyribonucleotides (DNA). Similarly, the T1 values for the RNA H1' protons are approximately twice those of the corresponding DNA H1' protons. These relaxation differences persist in single duplexes containing covalently linked RNA and DNA segments and cause serious overestimation of distances involving RNA protons in typical NOESY spectra collected with a duty cycle of 2-3 s. NMR and circular dichroism experiments indicate that the segments of RNA maintain their A-form geometry even in the interior of DNA-RNA-DNA chimeric duplexes, suggesting that the relaxation times are correlated with the type of helix topology. The difference in local proton density is the major cause of the longer nonselective T1s of RNA compared to DNA, although small differences in internal motion cannot be completely ruled out. Fortunately, any internal motion differences that might exist are shown to be too small to affect cross-relaxation rates, and therefore reliable distance data can be obtained from time-dependent NOESY data sets provided an adequately long relaxation delay is used. In hybrid or chimeric RNA-DNA duplexes, if the longer RNA relaxation times are not taken into account in the recycle delay of NOESY pulse sequences, serious errors in measuring RNA proton distances are introduced.  相似文献   

10.
Electrostatic interactions, base-pairing, and especially base-stacking dominate RNA three-dimensional structures. In an A-form RNA helix, base-stacking results in nearly perfect parallel orientations of all bases in the helix. Interestingly, when an RNA structure containing multiple helices is visualized at the atomic level, it is often possible to find an orientation such that only the edges of most bases are visible. This suggests that a general aspect of higher level RNA structure is a coplanar arrangement of base-normal vectors. We have analyzed all solved RNA crystal structures to determine the degree to which RNA base-normal vectors are globally coplanar. Using a statistical test based on the Watson-Girdle distribution, we determined that 330 out of 331 known RNA structures show statistically significant (p < 0.05; false discovery rate [FDR] = 0.05) coplanar normal vector orientations. Not surprisingly, 94% of the helices in RNA show bipolar arrangements of their base-normal vectors (p < 0.05). This allows us to compute a mean axis for each helix and compare their orientations within an RNA structure. This analysis revealed that 62% (208/331) of the RNA structures exhibit statistically significant coaxial packing of helices (p < 0.05, FDR = 0.08). Further analysis reveals that the bases in hairpin loops and junctions are also generally planar. This work demonstrates coplanar base orientation and coaxial helix packing as an emergent behavior of RNA structure and may be useful as a structural modeling constraint.  相似文献   

11.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

12.
The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional 15N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40° and two possible rotation angles differing by 180° around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. 13C-31P distances between the S4 backbone and the lipid 31P indicate a ∼ 9 Å local thinning and 2 Å average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 Å from the guanidinium Cζ of the second Arg to 31P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix.  相似文献   

13.
Bulged nucleotides play a variety of important roles in RNA structure and function, frequently forming tertiary interactions and sometimes even participating in RNA catalysis. In pre-mRNA splicing, the U2 snRNA base pairs with the intron branchpoint sequence (BPS) to form a short RNA duplex that contains a bulged adenosine that ultimately serves as the nucleophile that attacks the 5' splice site. We have determined a 2.18-A resolution crystal structure of a self-complementary RNA designed to mimic the highly conserved yeast (Saccharomyces cerevisiae) branchpoint sequence (5'-UACUAACGUAGUA with the BPS italicized and the branchsite adenosine underlined) base paired with its complementary sequence from U2 snRNA. The structure shows a nearly ideal A-form helix from which two unpaired adenosines flip out. Although the adenosine adjacent to the branchsite adenosine is the one bulged out in the structure described here, either of these adenosines can serve as the nucleophile in mammalian but not in yeast pre-mRNA splicing. In addition, the packing of the bulged RNA helices within the crystal reveals a novel RNA tertiary interaction in which three RNA helices interact through bulged adenosines in the absence of any divalent metal ions.  相似文献   

14.
Dimerization of HIV-1 genomic RNA is an essential step of the viral cycle, initiated at a conserved stem-loop structure which forms a 'kissing complex' involving loop-loop interactions (dimerization initiation site, DIS). A 19mer RNA oligonucleotide (DIS-19) has been synthesized which forms a stable symmetrical dimer in solution at millimolar concentrations. Dimerization does not depend on addition of Mg2+. RNA ligation experiments unambiguously indicate that the formed dimer is a stable kissing complex under the NMR experimental conditions.1H NMR resonance assignments were obtained for DIS-19 at 290 K and pH 6.5. Analysis of the pattern of NOE connectivities reveals that the helix formed by loop-loop base pairing is stacked onto the two terminal stems. Non-canonical base pairs between two essential and conserved adenines are found at the junctions between the two intramolecular and the single intramolecular helices.  相似文献   

15.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

17.
Chiu YL  Rana TM 《Molecular cell》2002,10(3):549-561
We investigated the mechanism of RNA interference (RNAi) in human cells. Here we demonstrate that the status of the 5' hydroxyl terminus of the antisense strand of a siRNA determines RNAi activity, while a 3' terminus block is tolerated in vivo. 5' hydroxyl termini of antisense strands isolated from human cells were phosphorylated, and 3' end biotin groups were not efficiently removed. We found no requirement for a perfect A-form helix in siRNA for interference effects, but an A-form structure was required for antisense-target RNA duplexes. Strikingly, crosslinking of the siRNA duplex by psoralen did not completely block RNA interference, indicating that complete unwinding of the siRNA helix is not necessary for RNAi activity in vivo. These results suggest that RNA amplification by RNA-dependent RNA polymerase is not essential for RNAi in human cells.  相似文献   

18.
The recent discovery of the RNA interference mechanism emphasizes the biological importance of short, isolated, double-stranded (ds) RNA helices and calls for a complete understanding of the biophysical properties of dsRNA. However, most previous studies of the electrostatics of nucleic acid duplexes have focused on DNA. Here, we present a comparative investigation of electrostatic effects in RNA and DNA. Using resonant (anomalous) and non-resonant small-angle X-ray scattering, we characterized the charge screening efficiency and counterion distribution around short (25 bp) dsDNA and RNA molecules of comparable sequence. Consistent with theoretical predictions, we find counterion mediated screening to be more efficient for dsRNA than dsDNA. Furthermore, the topology of the RNA A-form helix alters the spatial distribution of counterions relative to B-form DNA. The experimental results reported here agree well with ion-size-corrected non-linear Poisson–Boltzmann calculations. We propose that differences in electrostatic properties aid in selective recognition of different types of short nucleic acid helices by target binding partners.  相似文献   

19.
Structured RNAs must fold into their native structures and discriminate against a large number of alternative ones, an especially difficult task given the limited information content of RNA''s nucleotide alphabet. The simplest motifs within structured RNAs are two helices joined by nonhelical junctions. To uncover the fundamental behavior of these motifs and to elucidate the underlying physical forces and challenges faced by structured RNAs, we computationally and experimentally studied a tethered duplex model system composed of two helices joined by flexible single- or double-stranded polyethylene glycol tethers, whose lengths correspond to those typically observed in junctions from structured RNAs. To dissect the thermodynamic properties of these simple motifs, we computationally probed how junction topology, electrostatics, and tertiary contact location influenced folding stability. Small-angle X-ray scattering was used to assess our predictions. Single- or double-stranded junctions, independent of sequence, greatly reduce the space of allowed helical conformations and influencing the preferred location and orientation of their adjoining helices. A double-stranded junction guides the helices along a hinge-like pathway. In contrast, a single-stranded junction samples a broader set of conformations and has different preferences than the double-stranded junction. In turn, these preferences determine the stability and distinct specificities of tertiary structure formation. These sequence-independent effects suggest that properties as simple as a junction''s topology can generally define the accessible conformational space, thereby stabilizing desired structures and assisting in discriminating against misfolded structures. Thus, junction topology provides a fundamental strategy for transcending the limitations imposed by the low information content of RNA primary sequence.  相似文献   

20.
Topology of three-way junctions in folded RNAs   总被引:9,自引:2,他引:7  
The three-way junctions contained in X-ray structures of folded RNAs have been compiled and analyzed. Three-way junctions with two helices approximately coaxially stacked can be divided into three main families depending on the relative lengths of the segments linking the three Watson-Crick helices. Each family has topological characteristics with some conservation in the non-Watson-Crick pairs within the linking segments as well as in the types of contacts between the segments and the helices. The most populated family presents tertiary interactions between two helices as well as extensive shallow/minor groove contacts between a linking segment and the third helix. On the basis of the lengths of the linking segments, some guidelines could be deduced for choosing a topology for a three-way junction on the basis of a secondary structure. Examples and prediction bas'ed on those rules are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号