首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

2.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

3.
应用流式细胞检测术、Western印迹、激酶活性测定等技术,检测PKC与ERK在热损伤诱导单核细胞株Raw264.7细胞凋亡中的作用。结果显示热损伤导致PKC短暂激活,PKC激活剂佛波脂(PMA)与热损伤联合作用导致PKC持续活化;并且PKC的持续激活抑制热损伤诱导的Raw264.7细胞凋亡,而PKC的抑制可促进细胞凋亡;ERK活性检测显示热损伤抑制ERK磷酸化,而PMA激活ERK磷酸化活化,并且这种激活作用通过PKC;进一步细胞凋亡检测显示ERK抑制剂PD098059可解除PMA对热损伤诱导Raw264.7细胞凋亡的抑制作用,从而提示PKC通过ERK负调控热损伤诱导的Raw264.7细胞凋亡。  相似文献   

4.
Transmigration of monocytes to the subendothelial space is the initial step of atherosclerotic plaque formation and inflammation. Integrin activation and chemotaxis are two important functions involved in monocyte transmigration. To delineate the signaling cascades leading to integrin activation and chemotaxis by monocyte chemoattractant protein-1 (MCP-1), we have investigated the roles of MAPK and Rho GTPases in THP-1 cells, a monocytic cell line. MCP-1 stimulated beta1 integrin-dependent, but not beta2 integrin-dependent cell adhesion in a time-dependent manner. MCP-1-mediated cell adhesion was inhibited by a MEK inhibitor but not by a p38-MAPK inhibitor. In contrast, MCP-1-mediated chemotaxis was inhibited by the p38-MAPK inhibitor but not by the MEK inhibitor. The inhibitor of Rho GTPase, C3 exoenzyme, and a Rho kinase inhibitor abrogated MCP-1-dependent chemotaxis but not integrin-dependent cell adhesion. Further, C3 exoenzyme and the Rho kinase inhibitor blocked MCP-1-dependent p38-MAPK activation. These data indicate that ERK is responsible for integrin activation, that p38-MAPK and Rho are responsible for chemotaxis mediated by MCP-1, and that Rho and the Rho kinase are upstream of p38-MAPK in MCP-1-mediated signaling. This study demonstrates that two distinct MAPKs regulate two dependent signaling cascades leading to integrin activation and chemotaxis induced by MCP-1 in THP-1 cells.  相似文献   

5.
6.
Glucose-dependent insulinotropic polypeptide (GIP) regulates glucose homeostasis and high-fat diet-induced obesity and insulin resistance. Therefore, elucidating the mechanisms that regulate GIP release is important. GIP is produced by K cells, a specific subtype of small intestinal enteroendocrine (EE) cell. Bombesin-like peptides produced by enteric neurons and luminal nutrients stimulate GIP release in vivo. We previously showed that PMA, bombesin, meat hydrolysate, glyceraldehyde, and methylpyruvate increase hormone release from a GIP-producing EE cell line (GIP/Ins cells). Here we demonstrate that bombesin and nutrients additively stimulate hormone release from GIP/Ins cells. In various cell systems, bombesin and PMA regulate cell physiology by activating PKD signaling in a PKC-dependent fashion, whereas nutrients regulate cell physiology by inhibiting AMPK signaling. Western blot analyses of GIP/Ins cells using antibodies specific for activated and/or phosphorylated forms of PKD and AMPK and one substrate for each kinase revealed that bombesin and PMA, but not nutrients, activated PKC, but not PKD. Conversely, nutrients, but not bombesin or PMA, inhibited AMPK activity. Pharmacological studies showed that PKC inhibition blocked bombesin- and PMA-stimulated hormone release, but AMPK activation failed to suppress nutrient-stimulated hormone secretion. Forced expression of constitutively active vs. dominant negative PKDs or AMPKs failed to perturb bombesin- or nutrient-stimulated hormone release. Thus, in GIP/Ins cells, PKC regulates bombesin-stimulated hormone release, whereas nutrients may control hormone release by regulating the activity of AMPK-related kinases, rather than AMPK itself. These results strongly suggest that K cells in vivo independently respond to neuronal vs. nutritional stimuli via two distinct signaling pathways.  相似文献   

7.
Decoy receptor 3 (DcR3), a newly identified soluble protein belonging to the tumor necrosis factor receptor (TNFR) superfamily, is a receptor for Fas ligand (FasL), LIGHT and TL1A. It has been demonstrated that DcR3 is frequently overexpressed by malignant tumors arising from lung, gastrointestinal tract, neuronal glia and virus-associated leukemia. Recently, we demonstrated that DcR3 is able to modulate the differentiation and activation of dendritic cells (DCs), and that DcR3-treated DCs skew naive T cell differentiation towards a Th2 phenotype. In this study, we further demonstrate that DcR3 is able to induce actin reorganization and enhance the adhesion of monocytes and THP-1 cells by activating multiple signaling molecules, such as protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK) and Src kinases. This provides the first evidence that the soluble DcR3, like other immobilized members of TNFR superfamily, is able to trigger 'reverse signaling' to modulate cell function.  相似文献   

8.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

9.
Previously we have shown that protein kinase C (PKC)-mediated reorganization of the actin cytoskeleton in smooth muscle cells is transmitted by the non-receptor tyrosine kinase, Src. Several authors have described how 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation of cells results in an increase of Src activity, but the mechanism of the PKC-mediated Src activation is unknown. Using PKC isozymes purified from Spodoptera frugiperda insect cells, we show here that PKC is not able to activate Src directly. Our data reveal that the PKC-dependent Src activation occurs via the activation of the protein tyrosine phosphatase (PTP) PTP alpha. PTP alpha becomes activated in vivo after TPA stimulation. Further, we show that PKC delta phosphorylates and activates only PTP alpha in vitro but not any other of the TPA-responsive PKC isozymes that are expressed in A7r5 rat aortic smooth muscle cells. To further substantiate our data, we show that cells lacking PKC delta have a markedly reduced PTP alpha and Src activity after 12-O-tetradecanoylphorbol-13-acetate stimulation. These data support a model in which the main mechanism of 12-O-tetradecanoylphorbol-13-acetate-induced Src activation is the direct phosphorylation and activation of PTP alpha by PKC delta, which in turn dephosphorylates and activates Src.  相似文献   

10.
11.
In monocytes and macrophages, activation of the tyrosine kinase Syk is an essential step in the biochemical cascade linking aggregation of receptors for immunoglobulin G (FcgammaR) to initiation of effector functions. An increase in Syk activation during differentiation of myeloid cells by different agents has been reported. We studied the activation state of Syk in response to FcgammaRII crosslinking in monocytic cells before and after in vitro differentiation with 1alpha, 25-dihydroxy-vitamin D3. We show here that while in undifferentiated THP-1 cells clustering of FcgammaRII induces significant phosphorylation and activation of Syk, in THP-1 cells differentiated in vitro by 1alpha, 25-dihydroxy-vitamin D3, FcgammaRII crosslinking induced a decrease in Syk activity. In vitro differentiation did not induce changes in the expression of FcgammaRII isoforms. The observed effect on Syk activation though FcgammaRII could be mediated by differentiation-induced changes in the expression and basal activation level of Syk, as well as changes in the association of Syk with the tyrosine phosphatase SHP-1. These results suggest that the biochemical signaling pathways induced by FcgammaRII could be dependent on the differentiation state of the cell.  相似文献   

12.
13.
Wang J  Wu Y  Hu H  Wang W  Lu Y  Mao H  Liu X  Liu Z  Chen BG 《Cellular immunology》2011,(1):39-44
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes.  相似文献   

14.
In this study, we analyzed in ratmyometrial cells the signaling pathways involved in the endothelin(ET)-1-induced extracellular signal-regulated kinase (ERK) activationrequired for the induction of DNA synthesis. We found that inhibitionof protein kinase C (PKC) by Ro-31-8220 abolished ERK activation.Inhibition of phospholipase C (PLC) by U-73122 or of phosphoinositide(PI) 3-kinase by wortmannin partially reduced ERK activation. A similarpartial inhibition was observed after treatment with pertussis toxin orPKC downregulation by phorbol ester treatment. The effect of wortmanninwas additive with that produced by PKC downregulation but not with thatdue to pertussis toxin. These results suggest that bothdiacylglycerol-sensitive PKC, activated by PLC products, anddiacylglycerol-insensitive PKC, possibly activated by aGi-PI 3-kinase-dependent process, are involved inET-1-induced ERK activation. These two pathways were found to beactivated mainly through the ETA receptor subtype. ET-1 andphorbol ester stimulated Src activity in a PKC-dependent manner, bothresponses being abolished in the presence of Ro-31-8220. Inhibition of Src kinases by PP1 abrogated phorbol ester- and ET-1-induced ERK activation. Finally, ET-1 activated Ras in a PP1-and Ro-31-8220-sensitive manner. Altogether, our results indicatethat ET-1 induces ERK activation in rat myometrial cells through thesequential stimulation of PKC, Src, and Ras.

  相似文献   

15.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

16.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

17.
Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC) signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed by increased phosphorylation of Tyr845 and Tyr1068 residues of the EGFR. Diacylglycerol is a physiological activator of PKC that can be removed by diacylglycerol kinase (DGK) activity. We found, in A431 and HEK293 cells, that the DGKθ isozyme translocated from the cytosol to the plasma membrane, where it co-localized with the EGFR and subsequently moved into EGFR-containing intracellular vesicles. This translocation was dependent on both activation of EGFR and PKC signaling. Furthermore, DGKθ physically interacted with the EGFR and became tyrosine-phosphorylated upon EGFR stimulation. Overexpression of DGKθ attenuated the bradykinin-stimulated, PKC-mediated EGFR phosphorylation at Thr654, and enhanced the phosphorylation at Tyr845 and Tyr1068. SiRNA-induced DGKθ downregulation enhanced this PKC-mediated Thr654 phosphorylation. Our data indicate that DGKθ translocation and activity is regulated by the concerted activity of EGFR and PKC and that DGKθ attenuates PKC-mediated Thr654 phosphorylation that is linked to desensitisation of EGFR signaling.  相似文献   

18.
The coagulation protein thrombin has been shown to stimulate multiple endothelial-cell (EC) functions, including production of platelet-derived growth factor and of platelet-activating factor (PAF), and neutrophil adhesion. We have found that thrombin causes increased binding of monocytic cells (U937 cells and normal human monocytes) to cultured EC of various species. Maximum adhesion of monocytes to pig aortic EC occurred 6 h after thrombin treatment and remained elevated through 24 h. Stimulation of adherence by bovine alpha-thrombin was half-maximal at 15 units/ml, and reached a plateau at 50 units/ml. Catalytically inactive thrombin (phenylmethanesulphonyl fluoride-treated) had no effect on monocyte adhesion to EC. Heparin, but not the endotoxin antagonist polymyxin B, suppressed the stimulation of adhesion by thrombin without altering basal adhesion. Two lines of evidence suggested that protein kinase C (PKC) was involved in the intracellular signalling to increase monocyte adhesion to EC. First the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated monocytic-cell adhesion to EC at a dose consistent with stimulation of PKC (half-maximal response at 1-3 nM) and with a time course similar to that for thrombin stimulation (maximal by 4 h). Diacylglycerol, a physiological activator of PKC, also stimulated U937-cell adhesion to EC. Secondly, H7, a PKC inhibitor, completely blocked stimulation of monocyte adhesion to EC by thrombin or PMA. The structural analogue of H7, HA1004, which preferentially inhibits cyclic-AMP- and cyclic-GMP-dependent protein kinases, had no effect on stimulated monocyte adhesion. The PKC inhibitor also blocked the stimulation of monocyte adhesion to EC by interleukin-1 and endotoxin, but did not alter the basal level of monocyte binding to unstimulated EC. Thrombin stimulation of monocyte adhesion differed from the reported stimulation of neutrophil adhesion by thrombin in that the latter process reached a maximum in minutes rather than hours. In addition, neither PAF itself nor agents known to stimulate PAF production by EC, such as arachidonate and the Ca2+ ionophore A23187, had any effect on monocyte adhesion. These results demonstrate a PKC-dependent cytokine-like action of the coagulation protein thrombin in modulating monocytic-cell adhesion to EC, a phenomenon of potential importance in many pathological and physiological processes.  相似文献   

19.
Cytotoxic T cells (CTLs) kill target cells by releasing lytic agents via regulated exocytosis. Three signals are known to be required for exocytosis: an increase in intracellular Ca2+, activation of protein kinase C (PKC) and activation of extracellular signal regulated signal kinase (ERK). ERK activation required for exocytosis depends on activity of PKC. The simplest possibility is that the sole effect of PKC required for exocytosis is ERK activation. Testing this requires dissociating ERK and PKC activation. We did this using TCR-independent stimulation of TALL-104 human leukemic CTLs. When cells are stimulated with thapsigargin and PMA, agents that increase intracellular Ca2+ and activate PKC, respectively, PKC-dependent ERK activation is required for lytic granule exocytosis. Expressing a constitutively active mutant MAP kinase kinase activates ERK independent of PKC. However, activating ERK without PKC does not support lytic granule exocytosis, indicating that there are multiple effects of PKC required for granule exocytosis.  相似文献   

20.
Extracellular signal-regulated kinase (ERK) is one of the key protein kinases that regulate the growth and proliferation in cardiac fibroblasts (CFs). As an energy sensor of cellular metabolism, AMP-activated protein kinase (AMPK) is found recently to be involved in myocardial remodeling. In this study, we investigated the crosstalk between ERK and AMPK in the growth and proliferation of CFs. In neonatal rat cardiac fibroblasts (NRCFs), we found that serum significantly inhibited basal AMPK phosphorylation between 10 min and 24 h and also partially inhibited AMPK phosphorylation by AMPK activator, 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR). Furthermore, ERK inhibitor could greatly reverse the inhibition of AMPK by serum. Conversely, activation of AMPK by AICAR also showed a significant inhibition of basal and serum-induced ERK phosphorylation but it showed a delayed and steadfast inhibition which appeared after 60 min and lasted until 12 h. Moreover, inhibition of ERK could repress the activation of p70S6K, an important kinase in cardiac proliferation, and AICAR could also inhibit p70S6K phosphorylation. In addition, under both serum and serum-free medium, AICAR significantly inhibited the DNA synthesis and cell numbers, and reduced cells at S phase. In conclusion, AMPK activation with AICAR inhibited growth and proliferation in cardiac fibroblasts, which involved inhibitory interactions between ERK and AMPK. This is the first report that AMPK could be a target of ERK in growth factors-induced proliferation, which may give a new mechanism that growth factors utilize in their promotion of proliferation in cardiac fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号