首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology.

Methodology/Principal Findings

This study utilizes past (1959–1960) and present (2006–2008) surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m), A1 (2195 m), B1 (2591 m), and C1 (3048 m), located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1) warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs) associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season.

Conclusions

Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger process-oriented and predictive framework for understanding community level phenological responses to climate change.  相似文献   

2.
Warming increases the spread of an invasive thistle   总被引:1,自引:0,他引:1  
Zhang R  Jongejans E  Shea K 《PloS one》2011,6(6):e21725

Background

Global warming and shifted precipitation regimes increasingly affect species abundances and distributions worldwide. Despite a large literature on species'' physiological, phenological, growth, and reproductive responses to such climate change, dispersal is rarely examined. Our study aims to test whether the dispersal ability of a non-native, wind-dispersed plant species is affected by climate change, and to quantify the ramifications for future invasion spread rates.

Methodology/Principal Findings

We experimentally increased temperature and precipitation in a two-cohort, factorial field study (n = 80). We found an overwhelming warming effect on plant life history: warming not only improved emergence, survival, and reproduction of the thistle Carduus nutans, but also elevated plant height, which increased seed dispersal distances. Using spatial population models, we demonstrate that these empirical warming effects on demographic vital rates, and dispersal parameters, greatly exacerbate spatial spread. Predicted levels of elevated winter precipitation decreased seed production per capitulum, but this only slightly offset the warming effect on spread. Using a spread rate decomposition technique (c*-LTRE), we also found that plant height-mediated changes in dispersal contribute most to increased spread rate under climate change.

Conclusions/Significance

We found that both dispersal and spread of this wind-dispersed plant species were strongly impacted by climate change. Dispersal responses to climate change can improve, or diminish, a species'' ability to track climate change spatially, and should not be overlooked. Methods that combine both demographic and dispersal responses thus will be an invaluable complement to projections of suitable habitat under climate change.  相似文献   

3.

Background and Aims

Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology.

Methods

A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009.

Key Results

Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition.

Conclusions

The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors.  相似文献   

4.
We conducted a field manipulation experiment to investigate developmental and demographic responses to warming and increased precipitation in three Inner Mongolian grasshopper species that differ in phenology (an early-season species Dasyhippus barbipes , a mid-season species Oedaleus asiaticus , and a late-season species Chorthippus fallax ). Infrared heaters were used for warming the ground surface by 1–2 °C above the ambient condition and periodic irrigations were applied to simulate a 50% increase in annual precipitation. We found that warming advanced the timing for egg hatching and grasshopper eclosion in each of the three species. However, grasshopper diapause and increased precipitation appeared to offset the effect of warming on egg development. Hatching and development were more strongly affected by warming in the mid-season O. asiaticus and the late-season C. fallax relative to the early-season D. barbipes . Warming by ∼1.5 °C advanced the occurrence of the mid-season O. asiaticus by an average of 4.96 days; while warming and increased precipitation interactively affected the occurrence of the late-season C. fallax , which advanced by 5.53 days. Our data and those of others suggest that most grasshopper species in the Inner Mongolian grassland are likely to extend their distribution northward with climate change. However, because of the differential response to warming we demonstrate for these species, the different grasshopper species are predicted to aggregate toward the middle period of the growing season, potentially increasing interspecific competition and grazing pressure on grasslands.  相似文献   

5.

Background and Aims

In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined.

Methods

Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year.

Key Results

Moderate summer warming (+2·5 °C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10°C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate.

Conclusions

Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration of subarctic species.Key words: Climate change, cold stratification, dwarf shrubs, germination percentage, incubation temperature, mean germination time, seedling establishment, seeds, Silene, subarctic species, Vaccinium, warming  相似文献   

6.
Xia J  Wan S 《PloS one》2012,7(2):e32088

Background

The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings

A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance

These plants'' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.  相似文献   

7.

Background

Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species.

Methodology/Principal Findings

We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species'' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming.

Conclusions/Significance

Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.  相似文献   

8.

Background

Over the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans.

Methodology/Principal Findings

We identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020–2049 and 2045–2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020–2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045–2074, when Ae. albopictus may invade large new areas.

Conclusions/Significance

Several parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future.  相似文献   

9.

Background and Aims

The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming.

Methods

Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments.

Key Results

Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted.

Conclusions

Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.  相似文献   

10.

Background

Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species.

Methodology/Principal Findings

We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds.

Conclusions

Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.  相似文献   

11.
Climate warming could shift the timing of seed germination in alpine plants   总被引:1,自引:0,他引:1  

Background and Aims

Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland.

Methods

Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site.

Key Results

Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species.

Conclusions

Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.  相似文献   

12.
Ma LN  Lü XT  Liu Y  Guo JX  Zhang NY  Yang JQ  Wang RZ 《PloS one》2011,6(11):e27645

Background

Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/Principal Findings

A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/Significance

Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.  相似文献   

13.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

14.

Background

The tiger mosquito (Aedes albopictus), vector of several emerging diseases, is expanding into more northerly latitudes as well as into higher altitudes in northern Italy. Changes in the pattern of distribution of the tiger mosquito may affect the potential spread of infectious diseases transmitted by this species in Europe. Therefore, predicting suitable areas of future establishment and spread is essential for planning early prevention and control strategies.

Methodology/Principal Findings

To identify the areas currently most suitable for the occurrence of the tiger mosquito in the Province of Trento, we combined field entomological observations with analyses of satellite temperature data (MODIS Land Surface Temperature: LST) and human population data. We determine threshold conditions for the survival of overwintering eggs and for adult survival using both January mean temperatures and annual mean temperatures. We show that the 0°C LST threshold for January mean temperatures and the 11°C threshold for annual mean temperatures provide the best predictors for identifying the areas that could potentially support populations of this mosquito. In fact, human population density and distance to human settlements appear to be less important variables affecting mosquito distribution in this area. Finally, we evaluated the future establishment and spread of this species in relation to predicted climate warming by considering the A2 scenario for 2050 statistically downscaled at regional level in which winter and annual temperatures increase by 1.5 and 1°C, respectively.

Conclusions/Significance

MODIS satellite LST data are useful for accurately predicting potential areas of tiger mosquito distribution and for revealing the range limits of this species in mountainous areas, predictions which could be extended to an European scale. We show that the observed trend of increasing temperatures due to climate change could facilitate further invasion of Ae. albopictus into new areas.  相似文献   

15.

Background

Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming.

Methodology/Principal Findings

A field manipulative experiment was conducted to elevate foliar temperature (T leaf) by 2.07°C in a temperate steppe in northern China. R d/T leaf curves (responses of dark respiration to T leaf), A n/T leaf curves (responses of light-saturated net CO2 assimilation rates to T leaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (A g) to T leaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of R d to 6-year experimental warming was found. However, A n had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of R d was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming.

Conclusions/Significance

Warming decreased the temperature sensitivity (Q 10) of the response of R d/A g ratio to T leaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.  相似文献   

16.

Background

In the past century, the global average temperature has increased by approximately 0.74°C and extreme weather events have become prevalent. Recent studies have shown that species have shifted from high-elevation areas to low ones because the rise in temperature has increased rainfall. These outcomes challenge the existing hypothesis about the responses of species to climate change.

Methodology/Principal Findings

With the use of data on the biological characteristics and reproductive behavior of Cephalantheropsis obcordata in Luofu Mountain, Guangdong, China, trends in the population size of the species were predicted based on several factors. The response of C. obcordata to climate change was verified by integrating it with analytical findings on meteorological data and an artificially simulated environment of water change. The results showed that C. obcordata can grow only in waterlogged streams. The species can produce fruit with many seeds by insect pollination; however, very few seeds can burgeon to become seedlings, with most of those seedlings not maturing into the sexually reproductive phase, and grass plants will die after reproduction. The current population''s age pyramid is kettle-shaped; it has a Deevey type I survival curve; and its net reproductive rate, intrinsic rate of increase, as well as finite rate of increase are all very low. The population used in the artificial simulation perished due to seasonal drought.

Conclusions

The change in rainfall patterns caused by climate warming has altered the water environment of C. obcordata in Luofu Mountain, thereby restricting seed burgeoning as well as seedling growth and shortening the life span of the plant. The growth rate of the C. obcordata population is in descending order, and models of population trend predict that the population in Luofu Mountain will disappear in 23 years.  相似文献   

17.

Background

Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs.

Results

We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae.

Conclusions

This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-815) contains supplementary material, which is available to authorized users.  相似文献   

18.
Olfactory responses of two species of grasshoppers to plant odours   总被引:6,自引:0,他引:6  
Electroantennogram (EAG) responses were recorded from two species of oedipodine grasshoppers, Oedaleus decorus asiaticus L. (graminivorous) and Angaracris barabensis Pall. (forbivorous), to volatiles emitted by chopped leaves of ten plant species. Male O. d. asiaticus showed much stronger EAG responses than conspecific females and both sexes of A. barabensis. Sexual differences in EAG responses correspond to different numbers of antennal sensilla of both sexes and to certain behavioural and morphological factors as well. The overall EAG response profiles of the two grasshopper species to the ten plant odours were similar. However, adaptation to host odour might have occurred because of differences in their feeding habits. Females of the graminivorous O. d. asiaticus possess a significantly higher olfactory sensitivity for poaceous plant species than A. barabensis, while the forbivorous A. barabensis showed significantly higher EAG responses to Allium senescens (Liliaceae), and a tendency of high responses to composite plant species in comparison with O. d. asiaticus.  相似文献   

19.

Background

New marine invasions have been recorded in increasing numbers along the world''s coasts due in part to the warming of the oceans and the ability of many invasive marine species to tolerate a broader thermal range than native species. Several marine invertebrate species have invaded the U.S. southern and mid-Atlantic coast from the Caribbean and this poleward range expansion has been termed ‘Caribbean Creep’. While models have predicted the continued decline of global biodiversity over the next 100 years due to global climate change, few studies have examined the episodic impacts of prolonged cold events that could impact species range expansions.

Methodology/Principal Findings

A pronounced cold spell occurred in January 2010 in the U.S. southern and mid-Atlantic coast and resulted in the mortality of several terrestrial and marine species. To experimentally test whether cold-water temperatures may have caused the disappearance of one species of the ‘Caribbean Creep’ we exposed the non-native crab Petrolisthes armatus to different thermal treatments that mimicked abnormal and severe winter temperatures. Our findings indicate that Petrolisthes armatus cannot tolerate prolonged and extreme cold temperatures (4–6°C) and suggest that aperiodic cold winters may be a critical ‘reset’ mechanism that will limit the range expansion of other ‘Caribbean Creep’ species.

Conclusions/Significance

We suggest that temperature ‘aberrations’ such as ‘cold snaps’ are an important and overlooked part of climate change. These climate fluctuations should be accounted for in future studies and models, particularly with reference to introduced subtropical and tropical species and predictions of both rates of invasion and rates of unidirectional geographic expansion.  相似文献   

20.

Background and Aims

Relationships between autumn flowering, precipitation and temperature of plant species of Mediterranean coastal shrublands have been described, but not analysed experimentally. These relationships were analysed for two species of co-occurring, dominant, autumn-flowering shrubs, Globularia alypum and Erica multiflora, over 4 years and in experimentally generated drought and warming conditions. The aim was to improve predictions about the responses and adaptations of flowering of Mediterranean vegetation to climate change.

Methods

Beginning of anthesis and date of maximum flowering intensity (‘peak date’) were monitored over 4 years (2001–2004) on a garrigue land type in the noth-east of the Iberian Peninsula. Two experimental treatments were applied, increased temperature (+0·73°C) and reduced soil moisture (–17%) relative to untreated plots.

Key Results

Flowering of Globularia alypum and Erica multiflora differed greatly between years depending on the precipitation of the previous months and the date of the last substantial rainfall (>10 mm). Globularia alypum flowered once or twice (unimodal or bimodal) as the result of differences in the distribution and magnitude of precipitation in late-spring and summer (when floral buds develop). The drought treatment delayed and decreased flowering of Globularia alypum in 2001 and delayed flowering in 2002. Warming extended the period between the beginning of flowering and the end of the second peak for autumn flowering in 2001 and also increased peak intensity in 2002. Flowering of Erica multiflora was unaffected by either treatment.

Conclusions

Autumn flowering of Globularia alypum and Erica multiflora is more dependent on water availability than on temperature. Considerable inter-annual plasticity in the beginning of anthesis and peak date and on unimodal or bimodal flowering constitutes a ‘safe strategy’ for both species in relation to varying precipitation and temperature. However, severe changes in precipitation in spring and summer may severely affect flowering of Globularia alypum but not Erica multiflora, thus affecting development/structure of the ecosystem if such conditions persist.Key words: Globularia alypum, Erica multiflora, autumn flowering, drought, global warming, Mediterranean  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号