首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Strains of Saccharomyces cerevisiae accumulated intracellular trehalose up to 105 mg/g cell dry wt with 90% survival. Viability could be correlated to trehalose levels during ethanol fermentation albeit the disaccharide did not seem to contribute to fermentation yields. Trehalose-6-phosphate synthase showed high activity (up to 279 mu/mg protein) even at high residual sucrose concentration (115 g/l) in the wort suggesting to be a response of yeast cells to the osmotic stress conditions.  相似文献   

4.
5.
A comparison between isothermal and anisothermal alcoholic fermentation is made in this paper. Important differences were observed: in some anisothermal operations maximum rates of CO2 production were reached towards the end of fermentation. Cultures with different initial nitrogen or biotin concentrations showed the importance of thermal conditions for the completion of the reaction. They indicated that the notion of the limiting nutrient does not have the same technological significance with respect to the mode of temperature processing. Thus, some studies at the laboratory scale should not be carried out under isothermal conditions, especially not within temperature ranges which may be critical for cell viability. This is, for example, the case with enological studies about red wine processing.  相似文献   

6.
Summary The sugar transport, fermentative alcohol dehydrogenase (ADH) and protease activities of different industrial strains ofSaccharomyces cerevisiae were measured during batch alcoholic fermentation.These strains exhibited different apparent loss of activity of sugar transport, which seemed to be characteristic of each one. A good correlation was found systematically between the integration of sugar transport activity along fermentation and the maximum amount of sugar consumed during fermentation. In all strains sugar transport activity exhibit a lower half-time than fermentative ADH activity. These progressive declines of both sugar uptake and ADH activities ofSaccharomyces cerevisiae during batch fermentation seemed to not result from an increase in the protease activity.  相似文献   

7.
8.
Our previous work revealed proanthocyanidins (PAs) could pose significant enhancement on the activity of H+-ATPase and fermentation efficiency after a transient initial inhibition (Li et al in Am J Enol Vitic 62(4):512–518, 2011). The aim of the present work was to understand the possible mechanism for this regulation. At Day 0.5 the gene expression level of PMA1 in AWRI R2 strain supplemented with 1.0 mg/mL PAs was decreased by around 54 % with a 50 % and a 56.5 % increase in the concentration of intracellular ATP and NADH/NAD+ ratio, respectively, compared to that of control. After the transient adaptation, the gene expression levels of PMA1 and HXT7 in PAs-treated cells were enhanced significantly accompanied by the decrease of ATP contents and NADH/NAD+ ratio, which resulted in the high level of the activities of rate-limiting enzymes. PAs could pose significant effects on the fermentation via glucose transport, the energy and redox homeostasis as well as the activities of rate-limiting enzymes in glycolysis.  相似文献   

9.
Fermentable sugars activated the K+ uptake system, increasing the Vmaxs of Rb+, Na+, and Li+ influxes, but sugars did not affect the effluxes of these cations. This activation seems to be a direct effect of fermentation and not the consequence of the H+ pump ATPase activation or internal pH decrease produced by fermentation.  相似文献   

10.
Summary The kinetics of ethanol, acetaldehyde, ethyl acetate and fusel alcohols during alcoholic fermentations on cane molasses by Saccharomyces cerevisiae have been obtained via an in-situ gas membrane sensor connected to a gas chromatograph. Various operation parameters have been investigated such as inoculum rate, molasses concentration, operation mode (batch, fed-batch). The modification of fusel alcohols kinetics in response to addition of amino acids has been studied as well as the assimilation of two intermediary aldehydes (isovaleraldehyde and isobutyraldehyde) in the fusel alcohol synthesis pathway. Offprint requests to: M.-N. Pons  相似文献   

11.
Abstract Ethanol at concentrations above 12% (v/v) in mineral medium with glucose and with ammonium as the only nitrogen source induced rapid inactivation of the ammonium transport system in the strain IGC 3507 of Saccharomyces cerevisiae terminating protein synthesis. Subsequently, when glucose was present, the glucose transport system was irreversibly inactivated. This two-step mechanism may play a decisive role when ethanol stops fermentation by S. cerevisiae , before all the fermentable sugar has been consumed.  相似文献   

12.
Yeasts can incorporate a wide variety of exogenous sterols under strict anaerobiosis. Yeasts normally require oxygen for growth when exogenous sterols are limiting, as this favours the synthesis of lipids (sterols and unsaturated fatty acids). Although much is known about the oxygen requirements of yeasts during anaerobic growth, little is known about their exact sterol requirements in such conditions. We developed a method to determine the amount of ergosterol required for the growth of several yeast strains. We found that pre-cultured yeast strains all contained similar amounts of stored sterols, but exhibited different ergosterol assimilation efficiencies in enological conditions [as measured by the ergosterol concentration required to sustain half the number of generations attributed to ergosterol assimilation (P50)]. P50 was correlated with the intensity of sterol synthesis. Active dry yeasts (ADYs) contained less stored sterols than their pre-cultured counterparts and displayed very different ergosterol assimilation efficiencies. We showed that five different batches of the same industrial Saccharomyces cerevisiae ADY exhibited significantly different ergosterol requirements for growth. These differences were mainly attributed to differences in initial sterol reserves. The method described here can therefore be used to quantify indirectly the sterol synthesis abilities of yeast strains and to estimate the size of sterol reserves.  相似文献   

13.
Nitrogen limitation is one of the most common causes for stuck or sluggish fermentation. A broad range of values have been reported as the minimum nitrogen concentration necessary for the completion of alcoholic fermentation. We have analyzed the minimum nitrogen concentration required to yield the maximum biomass (nitrogen reference value) using a microwell plate reader to monitor fermentation with different nitrogen sources and sugar concentrations. The biomass yield was dependent on the amount of available nitrogen, the nature of nitrogen source, and the sugar concentration in the medium. Nevertheless, achieving the maximum biomass was not sufficient to ensure the completion of the alcoholic fermentation, because the fermentation of 280?g?sugar?L(-1) stuck, regardless of the nature and concentration of nitrogen source. However, a mixture of five amino acids (Leu, Ile, Val, Phe and Thr) as the nitrogen source allowed for maximum sugar consumption. Analysis of cell vitality by impedance showed a significant improvement in the vitality for cells fermenting using this amino acid combination.  相似文献   

14.
Viable Saccharomyces cerevisiae and Candida shehatae cells were co-immobilized in a composite agar layer/microporous membrane structure. This immobilized-cell structure was placed in a vertical position between the two halves of a double-chambered, stainless-steel bioreactor of original design and applied to the continuous alcoholic fermentation of a mixture of glucose (35 g dm−3) and xylose (15 g dm−3). Various dilution rates and initial cell loadings of the gel layer were tested. Simultaneous consumption of the two sugars was always observed. The best fermentation performance was obtained at low dilution rate (0.02 h−1) with an excess of C. shehatae over S. cerevisiae in the initial cell loading of the gel (5.0 mg dry weight and 0.65 mg dry weight cm−3 gel respectively): 100% of glucose and 73% of xylose were consumed with an ethanol yield coefficient of 0.48 g g total sugars−1. In these conditions, however, the ethanol production rate per unit volume of gel remained low (0.37 g h−1 dm−3). Viable cell counts in gel samples after incubation highlighted significant heterogeneities in the spatial distribution of the two yeast species in both the vertical and the transverse directions. In particular, the overall cell number decreased from the bottom to the top of the agar sheet, which may explain the low ethanol productivity relative to the total gel volume. Received: 26 February 1998 / Received revision: 15 April 1998 / Accepted: 19 April 1998  相似文献   

15.
Aspects of glucose uptake in Saccharomyces cerevisiae.   总被引:3,自引:1,他引:2       下载免费PDF全文
A wild-type Saccharomyces cerevisiae strain showed simple saturation kinetics for glucose uptake, with a Km of 4 mM when cells were obtained from exponential growth on glucose, and a similar, single Km of 2 to 8 mM was found under a variety of other growth conditions. Later in growth on glucose, and during ethanol utilization, a second kinetic component was observed, which might reflect either artifacts of membrane alteration or a Km in the molar range.  相似文献   

16.
  • 1.1. The influence of heat or chemical treatment on the glucose uptake activity in vegetative cells and sporulating cells (3 h after transfer to sporulation medium) were examined in Saccharomyces cerevisiae.
  • 2.2. Both glucose uptake activities had a similar stability in heat or NaOH treatments. v3. The activity of the sporulating cells was more stable in HCl treatment than that of the vegetative cells.
  • 3.4. The activity of the sporulating cells was much more stable to desoxycholate treatment than that of the vegetative cells.
  相似文献   

17.
Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae   总被引:30,自引:14,他引:16  
There are both low- and high-affinity mechanisms for uptake of glucose in Saccharomyces cerevisiae; high-affinity uptake somehow depends on the presence of hexose kinases (L. F. Bisson and D. G. Fraenkel, Proc. Natl. Acad. Sci. U.S.A. 80:1730-1734, 1983; L. F. Bisson and D. G. Fraenkel, J. Bacteriol. 155:995-1000, 1983). We report here on the effect of culture conditions on the level of high-affinity uptake. The high-affinity component was low during growth in high concentrations of glucose (100 mM), increased as glucose was exhausted from the medium, and decreased again during prolonged incubation in the stationary phase. The higher level of uptake was found in growth on low concentrations of glucose (0.5 mM) and in growth on normal concentrations of galactose, lactate plus glycerol, or ethanol. These results suggest that some component of high-affinity uptake is repressible by glucose. A shift from medium with 100 mM glucose to medium with 5 mM glucose resulted in up to a 10-fold increase in the level of high-affinity uptake within 90 min; the increase did not occur in the presence of cycloheximide or 2,4-dinitrophenol or in buffer alone with low glucose, suggesting that protein synthesis or energy metabolism (or both) was required. Reimposition of the high glucose concentration caused loss of high-affinity uptake, a process not prevented by cycloheximide. The use of hexokinase single-gene mutants showed that the derepression of high-affinity uptake was not clearly correlated with changes in levels of the kinases themselves. These results place the phenomenon of high- and low-affinity uptake in a physiological context, in that high-affinity uptake seems to be expressed best in conditions where it might be needed. Apparent similarities between glucose uptake in yeast and animal cells are noted.  相似文献   

18.
Data obtained on the conversion of d-glucose to alcohol using Saccharomyces cerevisiae in batch culture has been analysed kinetically. The effects of different kinetic parameters, e.g. rates of ethanol and biomass formation, rate of d-glucose utilization and variation of pH have been studied. Analysis of data was made on the basis of Michaelis-Menten, Leudeking-Piret and simple kinetics. Unsteady rate behaviour in the lag phase was observed and explained.  相似文献   

19.
In a multiple deletion mutanthxt1Δhxt2Δhxt3Δ hxt4Δsnf3Δ ofSaccharomyces cerevisiae growing on 2 % glucose, high-affinity glucose-uptake (lowK m) was exhibited throughout growth on glucose in contrast to the wild-type, which exhibited the usual low-affinity to high-affinity transition as the glucose in the medium was consumed. elevated levels of invertase activity throughout growth on glucose, in this mutant as compared to the wild-type, indicate that glucose repression may be impaired. Howver, in a mutant containing only theHXT2 gene (hxt1Δhxt3Δhxt4Δ snf3Δ), invertase levels were similar to those in the wild-type. It is likely, therefore, that some of these putative glucose transporters, such asHXT2, also have regulatory roles in cellular metabolism. In triple hexose-kinase mutants, rapid (200-ms) measurements of initial glucose-uptake revealed high-affinity glucose uptake (K m approx. 2 mmol/L) while measurements on the slower 5-s scale clearly demonstrate that uptake is not linear over this longer period. These results suggest that this high-affinity component does not require a functional hexose-kinase.  相似文献   

20.
The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号