首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
Glycosylphosphatidylinositol (GPI)-anchored proteins coat the surface of extracellular Plasmodium falciparum merozoites, of which several are highly validated candidates for inclusion in a blood-stage malaria vaccine. Here we determined the proteome of gradient-purified detergent-resistant membranes of mature blood-stage parasites and found that these membranes are greatly enriched in GPI-anchored proteins and their putative interacting partners. Also prominent in detergent-resistant membranes are apical organelle (rhoptry), multimembrane-spanning, and proteins destined for export into the host erythrocyte cytosol. Four new GPI-anchored proteins were identified, and a number of other novel proteins that are predicted to localize to the merozoite surface and/or apical organelles were detected. Three of the putative surface proteins possessed six-cysteine (Cys6) motifs, a distinct fold found in adhesive surface proteins expressed in other life stages. All three Cys6 proteins, termed Pf12, Pf38, and Pf41, were validated as merozoite surface antigens recognized strongly by antibodies present in naturally infected individuals. In addition to the merozoite surface, Pf38 was particularly prominent in the secretory apical organelles. A different cysteine-rich putative GPI-anchored protein, Pf92, was also localized to the merozoite surface. This insight into merozoite surfaces provides new opportunities for understanding both erythrocyte invasion and anti-parasite immunity.  相似文献   

2.
Plasmodium falciparum merozoites engage the erythrocyte surface through several receptor (host)-ligand (parasite) interactions during a brief exchange that results in parasite invasion of the red blood cell. Tens of thousands of these events occur during the initial cycle of blood-stage infections but advance towards billions as the parasite becomes visible to microscopists attempting to diagnose the underlying cause of illness in febrile patients. Advancing blood-stage infection leads to massive proportions of erythrocytes that rupture during repetitive cycles of asexual reproduction. As the infection leads to illness, non-immune or semi-immune individuals can suffer from life-threatening consequences of severe malarial anemia that play a leading role in pathogenesis. Through natural selection, some erythrocyte membrane polymorphisms are likely to have reduced the invasion success of the P. falciparum merozoite and increased the fitness of the human host population.  相似文献   

3.
Plasmodium falciparum is the most virulent of the Plasmodium species infective to humans. Different P. falciparum strains vary in their dependence on erythrocyte receptors for invasion and their ability to switch in their utilization of different receptor repertoires. Members of the reticulocyte-binding protein-like (RBL) family of invasion ligands are postulated to play a central role in defining ligand–receptor interactions, known as invasion pathways. Here we report the targeted gene disruption of PfRh2b and PfRh2a in W2mef, a parasite strain that is heavily dependent on sialic-acid receptors for invasion, and show that the PfRh2b ligand is functional in this parasite background. Like the parental line, parasites lacking either PfRh2a or PfR2b can switch to a sialic acid-independent invasion pathway. However, both of the switched lines exhibit a reduced efficiency for invasion into sialic acid-depleted cells, suggesting a role for both PfRh2b and PfRh2a in invasion via sialic acid-independent receptors. We also find a strong selective pressure for the reconstitution of PfRh2b expression at the expense of PfRh2a. Our results reveal the importance of genetic background in ligand–receptor usage by P. falciparum parasites, and suggest that the co-ordinate expression of PfRh2a, PfRh2b together mediate efficient sialic acid-independent erythrocyte invasion.  相似文献   

4.
The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.  相似文献   

5.
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.  相似文献   

6.
Rhoptry associated protein 1 (RAP1) and 2 (RAP2), together with a poorly described third protein RAP3, form the low molecular weight complex within the rhoptries of Plasmodium falciparum. These proteins are thought to play a role in erythrocyte invasion by the extracellular merozoite and are important vaccine candidates. We used gene-targeting technology in P.falciparum blood-stage parasites to disrupt the RAP1 gene, producing parasites that express severely truncated forms of RAP1. Immunoprecipitation experiments suggest that truncated RAP1 species did not complex with RAP2 and RAP3. Consistent with this were the distinct subcellular localizations of RAP1 and 2 in disrupted RAP1 parasites, where RAP2 does not traffic to the rhoptries but is instead located in a compartment that appears related to the lumen of the endoplasmic reticulum. These results suggest that RAP1 is required to localize RAP2 to the rhoptries, supporting the hypothesis that rhoptry biogenesis is dependent in part on the secretory pathway in the parasite. The observation that apparently host-protective merozoite antigens are not essential for efficient erythrocyte invasion has important implications for vaccine design.  相似文献   

7.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

8.
A common pathological characteristic of Plasmodium falciparum infection is the cytoadhesion of mature-stage-infected erythrocytes (IE) to host endothelium and syncytiotrophoblasts. Massive accumulation of IE in the brain microvasculature or placenta is strongly correlated with severe forms of malaria. Extensive binding of IE to placental chondroitin sulfate A (CSA) is associated with physiopathology during pregnancy. The adhesive phenotype of IE correlates with the appearance of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) at the erythrocyte surface (approximately 16 h after merozoite invasion), so that only early blood-stage (ring-stage) IE appear in the peripheral blood. Here, we describe results that challenge the existing view of blood-stage IE biology by demonstrating the specific adhesion of IE, during the early ring-stage, to endothelial cell lines from the brain and lung and to placental syncytiotrophoblasts. Later, during blood-stage development of these IE, trophozoites switch to an exclusively CSA cytoadhesion phenotype. Therefore, adhesion to an individual endothelial cell or syncytiotrophoblast may occur throughout the blood-stage cycle, indicating the presence in malaria patients of noncirculating (cryptic) parasite subpopulations. We detected two previously unknown parasite proteins on the surface of ring-stage IE. These proteins disappear shortly after the start of PfEMP1-mediated adhesion.  相似文献   

9.
10.
Malaria parasites invade erythrocytes in a process mediated by a series of molecular interactions. Invasion of human erythrocytes by Plasmodium vivax is dependent upon the presence of a single receptor, but P. falciparum, as well as some other species, exhibits the ability to utilize multiple alternative invasion pathways. Conserved cysteine-rich domains play important roles at critical times during this invasion process and at other stages in the life cycle of malaria parasites. Duffy-binding-like (DBL) domains, expressed as a part of the erythrocyte-binding proteins (DBL-EBP), are such essential cysteine-rich ligands that recognize specific host cell surface receptors. DBL-EBP, which are products of the erythrocyte-binding-like (ebl) gene family, act as critical determinants of erythrocyte specificity and are the best-defined ligands from invasive stages of malaria parasites. The ebl genes include the P. falciparum erythrocyte-binding antigen-175 (EBA-175) and P. vivax Duffy-binding protein. DBL domains also mediate cytoadherence as a part of the variant erythrocytic membrane protein-1 (PfEMP-1) antigens expressed from var genes on the surface of P. falciparum-infected erythrocytes. A paralogue of the ebl family is the malarial ligand MAEBL, which has a chimeric structure where the DBL domain is functionally replaced with a distinct cysteine-rich erythrocyte-binding domain with similarity to the apical membrane antigen-1 (AMA-1) ligand domain. The Plasmodium AMA-1 ligand domain, which encompasses the extracellular cysteine domains 1 and 2 and is well conserved in a Toxoplasma gondii AMA-1, has erythrocyte-binding activity distinct from that of MAEBL. These important families of Plasmodium molecules (DBL-EBP, PfEMP-1, MAEBL, AMA-1) are interrelated through the MAEBL. Because MAEBL and the other ebl products have the characteristics expected of homologous ligands involved in equivalent alternative invasion pathways to each other, we sought to better understand their roles during invasion by determining their relative origins in the Plasmodium genome. An analysis of their multiple cysteine-rich domains permitted a unique insight into the evolutionary development of PLASMODIUM: Our data indicate that maebl, ama-1, and ebl genes have ancient origins which predate Plasmodium speciation. The maebl evolved as a single locus, including its unique chimeric structure, in each Plasmodium species, in parallel with the ama-1 and the ebl genes families. The ancient character of maebl, along with its different expression characteristics suggests that MAEBL is unique and does not play an alternative role in invasion to ebl products such as EBA-175. The multiple P. falciparum ebl paralogues that express DBL domains, which have occurred by duplication and diversification, potentially do provide multiple functionally equivalent ligands to EBA-175 for alternative invasion pathways.  相似文献   

11.
12.
Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways. Gene disruption of a key invasion ligand in the 3D7 parasite strain, the P. falciparum reticulocyte binding-like homolog 2b (PfRh2b), resulted in the parasite invading via a novel pathway. Here, we show results that suggest the molecular basis for this novel pathway is not due to a molecular switch but is instead mediated by the redeployment of machinery already present in the parent parasite but masked by the dominant role of PfRh2b. This would suggest that interactions directing invasion are organized hierarchically, where silencing of dominant invasion ligands reveal underlying alternative pathways. This provides wild parasites with the ability to adapt to immune-mediated selection or polymorphism in erythrocyte receptors and has implications for the use of invasion-related molecules in candidate vaccines.  相似文献   

13.
Some human malaria Plasmodium falciparum parasites, but not others, also cause disease in Aotus monkeys. To identify the basis for this variation, we crossed two clones that differ in Aotus nancymaae virulence and mapped inherited traits of infectivity to erythrocyte invasion by linkage analysis. A major pathway of invasion was linked to polymorphisms in a putative erythrocyte binding protein, PfRH5, found in the apical region of merozoites. Polymorphisms of PfRH5 from the A. nancymaae-virulent parent transformed the nonvirulent parent to a virulent parasite. Conversely, replacements that removed these polymorphisms from PfRH5 converted a virulent progeny clone to a nonvirulent parasite. Further, a proteolytic fragment of PfRH5 from the infective parasites bound to A. nancymaae erythrocytes. Our results also suggest that PfRH5 is a parasite ligand for human infection, and that amino acid substitutions can cause its binding domain to recognize different human erythrocyte surface receptors.  相似文献   

14.
Virulence of Plasmodium falciparum , the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the αDBL domain of Plasmodium knowlesi Duffy-binding protein (Pkα-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum -infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum -infected erythrocyte by anchoring and scaffolding.  相似文献   

15.
The proteins in apical organelles of Plasmodium falciparum merozoite play an important role in invasion into erythrocytes. Several rhoptry neck (RON) proteins have been identified in rhoptry proteome of the closely-related apicomplexan parasite, Toxoplasma gondii. Recently, three of P. falciparum proteins orthologous to TgRON proteins, PfRON2, 4 and 5, were found to be located in the rhoptry neck and interact with the micronemal protein apical membrane antigen 1 (PfAMA1) to form a moving junction complex that helps the invasion of merozoite into erythrocyte. However, the other P. falciparum RON proteins have yet to be characterized. Here, we determined that "PFL2505c" (hereafter referred to as pfron3) is the ortholog of the tgron3 in P. falciparum and characterized its protein expression profile, subcellular localization, and complex formation. Protein expression analysis revealed that PfRON3 was expressed primarily in late schizont stage parasites. Immunofluorescence microscopy (IFA) showed that PfRON3 localizes in the apical region of P. falciparum merozoites. Results from immunoelectron microscopy, along with IFA, clarified that PfRON3 localizes in the rhoptry body and not in the rhoptry neck. Even after erythrocyte invasion, PfRON3 was still detectable at the parasite ring stage in the parasitophorous vacuole. Moreover, co-immunoprecipitation studies indicated that PfRON3 interacts with PfRON2 and PfRON4, but not with PfAMA1. These results suggest that PfRON3 partakes in the novel PfRON complex formation (PfRON2, 3, and 4), but not in the moving junction complex (PfRON2, 4, 5, and PfAMA1). The novel PfRON complex, as well as the moving junction complex, might play a fundamental role in erythrocyte invasion by merozoite stage parasites.  相似文献   

16.
Asexual stage Plasmodium falciparum replicates and undergoes a tightly regulated developmental process in human erythrocytes. One mechanism involved in the regulation of this process is posttranslational modification (PTM) of parasite proteins. Palmitoylation is a PTM in which cysteine residues undergo a reversible lipid modification, which can regulate target proteins in diverse ways. Using complementary palmitoyl protein purification approaches and quantitative mass spectrometry, we examined protein palmitoylation in asexual-stage P.?falciparum parasites and identified over 400 palmitoylated proteins, including those involved in cytoadherence, drug resistance, signaling, development, and invasion. Consistent with the prevalence of palmitoylated proteins, palmitoylation is essential for P.?falciparum asexual development and influences erythrocyte invasion by directly regulating the stability of components of the actin-myosin invasion motor. Furthermore, P.?falciparum uses palmitoylation in diverse ways, stably modifying some proteins while dynamically palmitoylating others. Palmitoylation therefore plays a central role in regulating P.?falciparum blood stage development.  相似文献   

17.
This work shows that Plasmodium falciparum merozoite surface protein-6 (MSP-6) peptides specifically bind to membrane surface receptor on human erythrocytes. Three high activity binding peptides (HABPs) were found: peptides 31175 (41MYNNDKILSKNEVDTNIESN60) and 31178 (101YDIQATYQFPSTSGGNNVIP120) in the amino terminal region and 31191 (361EIDSTINNLVQEMIHLFSNNY380) at the carboxy terminal. Their binding to erythrocytes was saturable. HABPs 31191 and 31178 recognized 56 and 26 kDa receptors on erythrocyte membrane and inhibited in vitro Plasmodium falciparum merozoite invasion of erythrocytes by between 27% and 46% at 200 microg ml(-1) concentration, suggesting that these MSP-6 protein peptides play a possible role in the invasion process.  相似文献   

18.
Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy binding ligand-erythrocyte binding proteins (DBL-EBPs). The best-characterized P. falciparum DBL-EBP is erythrocyte binding antigen 175 (EBA-175), which binds erythrocyte surface glycophorin A. We report that EBA-175 is shed from the merozoite at around the point of invasion. Shedding occurs by proteolytic cleavage within the transmembrane domain (TMD) at a site that is conserved across the DBL-EBP family. We show that EBA-175 is cleaved by PfROM4, a rhomboid protease that localizes to the merozoite plasma membrane, but not by other rhomboids tested. Mutations within the EBA-175 TMD that abolish cleavage by PfROM4 prevent parasite growth. Our results identify a crucial role for intramembrane proteolysis in the life cycle of this pathogen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号